Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On the Partial Respects in Which a Real Valued Arithmetic System Can Verify Its Tableaux Consistency

  • Conference paper
Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3702))

  • 400 Accesses

Abstract

Gödel’s Second Incompleteness Theorem states axiom systems of sufficient strength are unable to verify their own consistency. We will show this theorem does not preclude axiomizations for a computer’s floating point arithmetic from recognizing their own consistency, in certain well defined partial respects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adamowicz, Z.: Herbrand Consistency and Bounded Arithmetic. Fundamenta Mathematica 171, 279–292 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Adamowicz, Z., Bigorajska, T.: Existentially Closed Structures and Gödel’s Second Incompleteness Theorem. Journal of Symbolic Logic 66, 349–356 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Adamowicz, Z., Zbierski, P.: The Logic of Mathematics. John Wiley and Sons, Chichester (1997)

    Google Scholar 

  4. Adamowicz, Z., Zbierski, P.: On Herbrand consistency in weak theories. Archive for Mathematical Logic 40, 399–413 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Arai, T.: Derivability Conditions on Rosser’s Proof Predicates. Notre Dame Journal on Formal Logic 31, 487–497 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bezboruah, A., Shepherdson, J.: Gödel’s Second Incompleteness Theorem for Q. Journal of Symb Logic 41, 503–512 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  7. Burden, R., Faires, J.: Numerical Methods, Brookes-Cole (2003)

    Google Scholar 

  8. Buss, S., Ignjatovic, A.: Unprovability of Consistency Statements in Fragments of Bounded Arithmetic. Annals of Pure and Applied Logic 74, 221–244 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fitting, M.: First Order Logic & Automated Theorem Proving. Springer, Heidelberg (1996)

    MATH  Google Scholar 

  10. Gödel, K.: Über formal unentscheidbare Sätse der Principia Mathematica und Verwandte Systeme I. Monatshefte für Math. Phys. 37, 349–360 (1931)

    Article  Google Scholar 

  11. Hájek, P.: On Interpretability in Set Theory Part I in. Com. Math. Univ. Carol 12, 73–79 (1971), Part II in. Comm. Math. Univ. Carol 13, 445-455 (1972)

    MATH  Google Scholar 

  12. Hájek, P., Pudlák, P.: Metamathematics of First Order Arithmetic. Springer, Heidelberg (1991)

    Google Scholar 

  13. Jeroslow, R.: Consistency Statements in Formalal Mathematics. Fundamenta Mathemtaica 72, 17–40 (1971)

    MATH  MathSciNet  Google Scholar 

  14. Kleene, S.: On the Notation of Ordinal Numbers. Journal Symb Logic 3, 150–156 (1938)

    Article  MATH  Google Scholar 

  15. Krajícek, J.: A Note on Proofs of Falsehood. Archive for Math. Logic 26, 169–176 (1987)

    Article  MATH  Google Scholar 

  16. Kreisel, G., Takeuti, G.: Formally Self-Referential Propositions for Cut-Free Classical Analysis. Dissertationes Mathematicae 118, 1–55 (1974)

    MathSciNet  Google Scholar 

  17. Nelson, E.: Predicative Arithmetic. Princeton Math Notes (1986)

    Google Scholar 

  18. Paris, J., Dimitracopoulos, C.: A Note on the Undefinability of Cuts. Journal of Symbolic Logic 48, 564–569 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  19. Paris, J., Wilkie, A.: Δ0 Sets and Induction. In: 1981 Jadswin Conf. Proc., pp. 237–248 (1981)

    Google Scholar 

  20. Pudlák, P.: Cuts, Consistency Statements and Interpretations. Journal of Symbolic Logic 50, 423–442 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  21. Pudlák, P.: On the Lengths of Proofs of Consistency. In: Collegium Logicum: 1996 Annals of the Kurt Gödel Society, vol. 2, pp. 65–86. Springer, Wien-NewYork (1996)

    Google Scholar 

  22. Rogers Jr., H.: Recursive Functions and Effective Compatibility. McGrawHill, New York (1967)

    Google Scholar 

  23. Rosser, J.: Extensions of Theorems by Gödel and Church. Jour. Symb. Logic 1, 87–91 (1936)

    Article  MATH  Google Scholar 

  24. Salehi, S.: Ph D thesis for the Polish Academy of Sciences (October 2001)

    Google Scholar 

  25. Smoryński, C.: Non-standard Models and Related Developments in the Work of Harvey Friedman. In: Harvey Friedman’s Research in Foundations of Math. North-Holland, Amsterdam (1985)

    Google Scholar 

  26. Solovay, R.: Private telephone communications during 1994 describing Solovay’s generalization of one of Pudlák’s theorems [20], using the additional formalisms of Nelson and Wilkie-Paris [17,34]. Solovay never published this result (called Theorem 1 in Section 2) or his other observations that several logicians [12,17,18,19,20,21,34] have attributed to his private communications. The Appendix A of [37]offers a 4-page summary of Solovay’s theorem

    Google Scholar 

  27. Švejdar, V.: Modal Analysis of Generalized Rosser Sentences. Journal of Symbolic Logic 48, 986–999 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  28. Takeuti, G.: Proof Theory. Studies in Logic, vol. 81. North Holland, Amsterdam (1987)

    MATH  Google Scholar 

  29. Takeuti, G.: Gödel Sentences of Bounded Arithmetic. Journal of Symbolic Logic 65, 1338–1346 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  30. Tarski, A., Mostowski, A., Robinson, R.M.: Undecidable Theories. North-Holland, Amsterdam (1953)

    MATH  Google Scholar 

  31. Visser, A.: The Unprovability of Small Inconsistency. Archive for Mathematical Logic 32, 275–298 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  32. Visser, A.: Faith and Falsity. to appear in Annals of Pure and Applied Logic

    Google Scholar 

  33. Vopěnka, P., Hájek, P.: Existence of a Generalized Semantic Model of Gödel-Bernays Set Theory. Bulletin de l’Academie Polonaise des Sciences 12, 1079–1086 (1973)

    Google Scholar 

  34. Wilkie, A., Paris, J.: On the Scheme of Induction for Bounded Arithmetic. Annals of Pure and Applied Logic 35, 261–302 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  35. Willard, D.: Self-Verifying Axiom Systems. In: Mundici, D., Gottlob, G., Leitsch, A. (eds.) KGC 1993. LNCS, vol. 713, pp. 325–336. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  36. Willard, D.: The Semantic Tableaux Version of the Second Incompleteness Theorem Extends Almost to Robinson’s Arithmetic Q. In: Dyckhoff, R. (ed.) TABLEAUX 2000. LNCS (LNAI), vol. 1847, pp. 415–430. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  37. Willard, D.: Self-Verifying Systems, the Incompleteness Theorem and the Tangibility Principle. Journal of Symbolic Logic 66, 536–596 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  38. Willard, D.: How to Extend The Semantic Tableaux And Cut-Free Versions of the Second Incompleteness Theorem Almost to Robinson’s Arithmetic Q. Journal of Symbolic Logic 67, 465–496 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  39. Willard, D.: Some Exceptions for the Semantic Tableaux Version of the Second Incompleteness Theorem. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, pp. 281–297. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  40. Willard, D.: A Version of the Second Incompleteness Theorem For Axiom Systems that Recognize Addition But Not Multiplication as a Total Function. In: First Order Logic Revisited (Year 2003 Proceedings FOL-75 Conference), pp. 337–368, Logos Verlag (Berlin) (2004)

    Google Scholar 

  41. Willard, D.: An Exploration of the Partial Respects in which an Axiom System Recognizing Solely Addition as a Total Function Can Verify Its Own Consistency. to appear in the Journal of Symbolic Logic

    Google Scholar 

  42. Willard, D.: A New Variant of Hilbert Styled Generalization of the Second Incompleteness Theorem and Some Exceptions to It. to appear in the Annals of Pure and Applied Logic

    Google Scholar 

  43. Wrathall, C.: Rudimentary Predicates and Relative Computation. Siam Journal on Computing 7, 194–209 (1978)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Willard, D.E. (2005). On the Partial Respects in Which a Real Valued Arithmetic System Can Verify Its Tableaux Consistency. In: Beckert, B. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2005. Lecture Notes in Computer Science(), vol 3702. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11554554_22

Download citation

  • DOI: https://doi.org/10.1007/11554554_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28931-9

  • Online ISBN: 978-3-540-31822-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics