Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On the Dynamic Increase of Multiplicities in Matrix Proof Methods for Classical Higher-Order Logic

  • Conference paper
Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3702))

  • 399 Accesses

Abstract

A major source of the undecidability of a logic is the number of instances—the so-called multiplicities—of existentially quantified formulas that are required in a proof. We consider the problem in the context of matrix proof methods for classical higher-order logic and present a technique which improves the standard practice of iterative deepening over the multiplicities. We present a mechanism that allows to adjust multiplicities on demand during matrix-based proof search and not only preserves existing substitutions and connections, but additionally adapts them to the parts that result from the increase of the multiplicities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andrews, P.B.: General models, descriptions, and choice in type theory. The Journal of Symbolic Logic 37(2), 385–397 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  2. Andrews, P.B.: Theorem proving via general matings. Journal of the Association for Computing Machinery 28(2), 193–214 (1981)

    MATH  MathSciNet  Google Scholar 

  3. Autexier, S.: Hierarchical Contextual Reasoning. PhD thesis, Computer Science Department, Saarland University, Saarbrücken, Germany (2003)

    Google Scholar 

  4. Barendregt, H.P.: The Lambda Calculus – Its Syntax and Semantics. North Holland, Amsterdam (1984)

    MATH  Google Scholar 

  5. Bibel, W.: On matrices with connections. Journal of the Association for Computing Machinery 28(4), 633–645 (1981)

    MATH  MathSciNet  Google Scholar 

  6. Fitting, M.: Tableau methods of proof for modal logics. Notre Dame Journal of Formal Logic XIII, 237–247 (1972)

    Article  MathSciNet  Google Scholar 

  7. Henkin, L.: Completeness in the theory of types. The Journal of Symbolic Logic 15, 81–91 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  8. Issar, S.: Path-focused duplication: A search procedure for general matings. In: Dietterich, T.S.W. (ed.) Proceedings of the 8th National Conference on Artificial Intelligence (AAAI 90), Menlo Park - Cambridge - London, July 1990, vol. 1, pp. 221–226. AAAI Press / MIT Press (1990)

    Google Scholar 

  9. Miller, D.A.: Proofs in Higher-Order Logic. Phd thesis, Carnegie Mellon University (1983)

    Google Scholar 

  10. Pfenning, F.: Proof Transformation in Higher-Order Logic. Phd thesis, Carnegie Mellon University (1987)

    Google Scholar 

  11. Smullyan, R.M.: First-Order Logic. Ergebnisse der Mathematik, vol. 43. Springer, Berlin (1968)

    MATH  Google Scholar 

  12. Wallen, L.: Automated proof search in non-classical logics: efficient matrix proof methods for modal and intuitionistic logics. MIT Press series in artificial intelligence (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Autexier, S. (2005). On the Dynamic Increase of Multiplicities in Matrix Proof Methods for Classical Higher-Order Logic. In: Beckert, B. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2005. Lecture Notes in Computer Science(), vol 3702. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11554554_6

Download citation

  • DOI: https://doi.org/10.1007/11554554_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28931-9

  • Online ISBN: 978-3-540-31822-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics