Abstract
This paper exploits the properties of the commute time to develop a graph-spectral method for image segmentation. Our starting point is the lazy random walk on the graph, which is determined by the heat-kernel of the graph and can be computed from the spectrum of the graph Laplacian. We characterise the random walk using the commute time between nodes, and show how this quantity may be computed from the Laplacian spectrum using the discrete Green’s function. We explore the application of the commute time for image segmentation using the eigenvector corresponding to the smallest eigenvalue of the commute time matrix.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems 30(1-7), 107–117 (1998)
Chung, F.R.K.: Spectral Graph Theory. CBMS series, vol. 92. American Mathmatical Society, Providence (1997)
Chung, F.R.K., Yau, S.-T.: Discrete green’s functions. J. Combin. Theory Ser., 191–214 (2000)
Gori, M., Maggini, M., Sarti, L.: Graph matching using random walks. In: ICPR 2004, pp. III, 394–397 (2004)
Kondor, R., Lafferty, J.: Diffusion kernels on graphs and other discrete structures. In: 19th Intl. Conf. on Machine Learning (ICML) [ICM 2002] (2002)
Lovász, L.: Random walks on graphs: A survey
Meila, M., Shi, J.: A random walks view of spectral segmentation (2001)
Pavan, M., Pelillo, M.: A new graph-theoretic approach to clustering and segmentation. In: CVPR 2003, pp. I, 145–152 (2003)
Robles-Kelly, A., Hancock, E.R.: String edit distance, random walks and graph matching. In: PAMI (2005) (to appear)
Saerens, M., Fouss, F., Yen, L., Dupont, P.: The principal components analysis of a graph, and its relationships to spectral clustering. In: LN-AI (2004)
Sarkar, S., Boyer, K.L.: Quantitative measures of change based on feature organization: Eigenvalues and eigenvectors. In: CVPR, p. 478 (1996)
Scott, G., Longuet-Higgins, H.: Feature grouping by relicalisation of eigenvectors of the proximity matrix. In: BMVC., pp. 103–108 (1990)
Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE PAMI 22(8), 888–905 (2000)
Sood, V., Redner, S., ben Avraham, D.: First-passage properties of the erdoscrenyi random graph. J. Phys. A: Math. Gen., 109–123 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Qiu, H., Hancock, E.R. (2005). Commute Times for Graph Spectral Clustering. In: Gagalowicz, A., Philips, W. (eds) Computer Analysis of Images and Patterns. CAIP 2005. Lecture Notes in Computer Science, vol 3691. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11556121_17
Download citation
DOI: https://doi.org/10.1007/11556121_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28969-2
Online ISBN: 978-3-540-32011-1
eBook Packages: Computer ScienceComputer Science (R0)