Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Commute Times for Graph Spectral Clustering

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3691))

Included in the following conference series:

Abstract

This paper exploits the properties of the commute time to develop a graph-spectral method for image segmentation. Our starting point is the lazy random walk on the graph, which is determined by the heat-kernel of the graph and can be computed from the spectrum of the graph Laplacian. We characterise the random walk using the commute time between nodes, and show how this quantity may be computed from the Laplacian spectrum using the discrete Green’s function. We explore the application of the commute time for image segmentation using the eigenvector corresponding to the smallest eigenvalue of the commute time matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems 30(1-7), 107–117 (1998)

    Article  Google Scholar 

  2. Chung, F.R.K.: Spectral Graph Theory. CBMS series, vol. 92. American Mathmatical Society, Providence (1997)

    Google Scholar 

  3. Chung, F.R.K., Yau, S.-T.: Discrete green’s functions. J. Combin. Theory Ser., 191–214 (2000)

    Google Scholar 

  4. Gori, M., Maggini, M., Sarti, L.: Graph matching using random walks. In: ICPR 2004, pp. III, 394–397 (2004)

    Google Scholar 

  5. Kondor, R., Lafferty, J.: Diffusion kernels on graphs and other discrete structures. In: 19th Intl. Conf. on Machine Learning (ICML) [ICM 2002] (2002)

    Google Scholar 

  6. Lovász, L.: Random walks on graphs: A survey

    Google Scholar 

  7. Meila, M., Shi, J.: A random walks view of spectral segmentation (2001)

    Google Scholar 

  8. Pavan, M., Pelillo, M.: A new graph-theoretic approach to clustering and segmentation. In: CVPR 2003, pp. I, 145–152 (2003)

    Google Scholar 

  9. Robles-Kelly, A., Hancock, E.R.: String edit distance, random walks and graph matching. In: PAMI (2005) (to appear)

    Google Scholar 

  10. Saerens, M., Fouss, F., Yen, L., Dupont, P.: The principal components analysis of a graph, and its relationships to spectral clustering. In: LN-AI (2004)

    Google Scholar 

  11. Sarkar, S., Boyer, K.L.: Quantitative measures of change based on feature organization: Eigenvalues and eigenvectors. In: CVPR, p. 478 (1996)

    Google Scholar 

  12. Scott, G., Longuet-Higgins, H.: Feature grouping by relicalisation of eigenvectors of the proximity matrix. In: BMVC., pp. 103–108 (1990)

    Google Scholar 

  13. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE PAMI 22(8), 888–905 (2000)

    Google Scholar 

  14. Sood, V., Redner, S., ben Avraham, D.: First-passage properties of the erdoscrenyi random graph. J. Phys. A: Math. Gen., 109–123 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Qiu, H., Hancock, E.R. (2005). Commute Times for Graph Spectral Clustering. In: Gagalowicz, A., Philips, W. (eds) Computer Analysis of Images and Patterns. CAIP 2005. Lecture Notes in Computer Science, vol 3691. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11556121_17

Download citation

  • DOI: https://doi.org/10.1007/11556121_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28969-2

  • Online ISBN: 978-3-540-32011-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics