Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Fast Face Detection Using a Cascade of Neural Network Ensembles

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3708))

Abstract

We propose a (near) real-time face detector using a cascade of neural network (NN) ensembles for enhanced detection accuracy and efficiency. First, we form a coordinated NN ensemble by sequentially training a set of neural networks with the same topology. The training implicitly partitions the face space into a number of disjoint regions, and each NN is specialized in a specific sub-region. Second, to reduce the total computation cost for the face detection, a series of NN ensembles are cascaded by increasing complexity of base networks. Simpler NN ensembles are used at earlier stages in the cascade, which are able to reject a majority of non-face patterns in the backgrounds. Our proposed approach achieves up to 94% detection rate on the CMU+MIT test set, a 98% detection rate on a set of video sequences and 3-4 frames/sec. detection speed on a normal PC (P-IV, 3.0GHz).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Heisele, B., Poggio, T., Pontil, M.: Face detection in still gray images. In: AI Memo, vol. 1687. MIT, Cambridge (2000)

    Google Scholar 

  2. Rowley, H., Baluja, S., Kanade, T.: Neural network-based face detection. IEEE Trans. PAMI 20(1), 23–28 (1998)

    Google Scholar 

  3. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proc. Int. Conf. CVPR, vol. 1, pp. 511–518 (2001)

    Google Scholar 

  4. Zuo, F., de With, P.H.N.: Fast human face detection using successive face detectors with incremental detection capability. In: Proc. SPIE Electronic Imaging (VCIP 2003), vol. 5022, pp. 831–841 (2003)

    Google Scholar 

  5. Duda, R., Hart, P., Stork, D.: Pattern classification, 2nd edn. Wiley interscience, Hoboken (2001) ISBN: 0-471-05669-3

    MATH  Google Scholar 

  6. Schneiderman, H., Kanade, T.: A statistical model for 3D object detection applied to faces and cars. In: Proc. Int. Conf. CVPR, vol. 1, pp. 746–751 (2000)

    Google Scholar 

  7. Roth, D., Yang, M.-H., Ahuja, N.: A SNoW-based face detector. In: Adv. in NIPS, vol. 12, pp. 855–861. MIT Press, Cambridge (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zuo, F., de With, P.H.N. (2005). Fast Face Detection Using a Cascade of Neural Network Ensembles. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2005. Lecture Notes in Computer Science, vol 3708. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11558484_4

Download citation

  • DOI: https://doi.org/10.1007/11558484_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29032-2

  • Online ISBN: 978-3-540-32046-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics