Abstract
Computer-based tools to manage clinical guidelines are gaining an increasing relevance within the areas of Artificial Intelligence (AI) in Medicine and Medical Informatics. One of the most relevant obstacles to the application, use and dissemination of clinical guidelines is the gap between the generality of guidelines (as defined, e.g., by physicians’ committees) and the peculiarities of the specific contexts of application. First, computer-based guideline managers must be integrated with the Hospital Information System (HIS), and usually different DBMS are adopted by different hospitals. Second, general guidelines do not take into account the fact that the tools needed for laboratory and instrumental investigations might be unavailable at a given hospital. Finally, a sort of “continuous adaptation” has to be supported, to manage the updates needed to cope with new clinical procedures. GLARE is a guideline manager which adopts advanced AI techniques to address the above contextualization issues.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Shahar, Y., Miksch, S., Johnson, P.: The Asgaard Project: a Task-Specific Framework for the Application and Critiquing of Time-Oriented Clinical Guidelines. Artificial Intelligence in Medicine 14, 29–51 (1998)
Musen, M.A., Tu, S.W., Das, A.K., Shahar, Y.: EON: a component-based approach to automation of protocol-directed therapy. JAMIA 3(6), 367–388 (1996)
Shiffman, R.N., Karras, B.T., Agrawal, A., Chen, R., Menco, L., Nath, S.: GEM: a proposal for a more comprehensive guideline document model using XML. JAMIA 7(5), 488–498 (2000)
Terenziani, P., Molino, G., Torchio, M.: A Modular Approach for Representing and Executing Clinical Guidelines. Artificial Intelligence in Medicine 23, 249–276 (2001)
Peleg, M., Boxawala, A.A., et al.: GLIF3: The evolution of a Guideline Representation Format. In: Proc. AMIA 2000, pp. 645–649 (2000)
Quaglini, S., Stefanelli, M., Cavallini, A., Miceli, G., Fassino, C., Mossa, C.: Guideline-based careflow systems. Artificial Intelligence in Medicine 20(1), 5–22 (2000)
Fox, J., Johns, N., Rahmanzadeh, A., Thomson, R.: Disseminating medical knowledge: the PROforma approach. Artificial Intelligence in Medicine 14, 157–181 (1998)
Gordon, C., Christensen, J.P.: Health Telematics for Clinical Guidelines and Protocols. IOS Press, Amsterdam (1995)
Fridsma, D.B.(Guest ed.): Special Issue on Workflow Management and Clinical Guidelines. JAMIA 22(1), 1–80 (2001)
Terenziani, P., Montani, S., Bottrighi, A., Torchio, M., Molino, G., Anselma, L., Correndo, G.: Applying Artificial Intelligence to clinical guidelines: the GLARE approach. In: Cappelli, A., Turini, F. (eds.) AI*IA 2003. LNCS, vol. 2829, pp. 536–547. Springer, Heidelberg (2003)
Terenziani, P., Mastromonaco, F., Molino, G., Torchio, M.: Executing clinical guidelines: temporal issues. In: Proc. AMIA 2000, pp. 848–852 (2000)
Terenziani, P., Montani, S., Bottrighi, A., Molino, G., Torchio, M.: Supporting physicians in taking decisions in Clinical Guidelines: the GLARE’s “what if” facility. In: Proc. AMIA 2002, pp. 772–776 (2002)
Montani, S., Terenziani, P.: Decision theory issues for supporting therapy selection in computerized guidelines. In: Bouchon-Meunier, B., Coletti, G., Yager, R.R. (eds.) Proc. Information Processing and Managing of Uncertainty in Knowledge-based Systems (IPMU), Casa Editrice Universita’ la Sapienza, Roma, pp. 591–598 (2004)
Montani, S., Terenziani, P.: Mapping clinical guidelines representation primitives to decision theory concepts. In: de Mantaras, R.L., Saitta, L. (eds.) Proc. European Conference on Artificial Intelligence (ECAI) 2004, Valencia, pp. 1063–1064. IOS Press, Amsterdam (2004)
Russel, S., Norvig, P.: Artificial Intelligence: a modern approach, 2nd edn. Prentice-Hall, Englewood Cliffs (2003)
Gold, M.R., Siegel, J.E., Russell, L.B., Weinstein, M.C.: Cost-Effectiveness in Health and Medicine. Oxford University Press, New York (1996)
Tijms, H.C.: Stochastic modelling and analysis: a computational approach. Wiley and Sons, Chichester (1986)
Molino, G., Torchio, M., Seidenari, C., Giannella, R., Olivero, F.: The key role of data structuring in EHR-supported patient care. In: Hofdijk, J., et al. (eds.) Proc. STC Clinical data sets for continuity of care and evidence based medicine, Rome, pp. 26–29 (2003)
Terenziani, P., Montani, S., Bottrighi, A., Torchio, M., Molino, G., Correndo, G.: A context-adaptable approach to clinical guidelines. In: Fieschi, M., et al. (eds.) Proc. MEDINFO 2004, pp. 169–173. IOS Press, Amsterdam (2004)
Boxwala, A.A., Tu, S.W., Peleg, M., Zeng, Q., Ogunyemi, O., Greenes, R.A., et al.: Toward a representation format for sharable clinical guidelines. Journal of Biomedical Informatics 34(3), 157–169 (2001)
Shahar, Y., Miksch, S., Johnson, P.: An intention-based language for representing clinical guidelines. In: Proc AMIA 1996, pp. 592–596 (1996)
Boxwala, A.A.: Applying axiomatic design methodology to create guidelines that are locally adaptable. In: Proc. AMIA 2002 (2002)
Snodgrass, R.T., Ahn, I.: Temporal Databases. IEEE Computer 19(9), 35–42 (1986)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Terenziani, P., Montani, S., Bottrighi, A., Torchio, M., Molino, G., Correndo, G. (2005). Managing Clinical Guidelines Contextualization in the GLARE System. In: Bandini, S., Manzoni, S. (eds) AI*IA 2005: Advances in Artificial Intelligence. AI*IA 2005. Lecture Notes in Computer Science(), vol 3673. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11558590_45
Download citation
DOI: https://doi.org/10.1007/11558590_45
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29041-4
Online ISBN: 978-3-540-31733-3
eBook Packages: Computer ScienceComputer Science (R0)