Abstract
We present results on classification of palmprint patterns from a large number of classes for biometric verification. We train optimal trade-off correlation filter classifiers with patterns of subregions of the palm as the actual biometric for the person’s identity. Our results show that with less than 5 cm2 (less than 1 in2) of the actual palm captured at a low resolution, correlation filter algorithms can verify the authenticity of the palmprint pattern with error rates below 0.5% from as many as 400 different patterns. There is no previous work on biometric palmprint recognition that studies pattern verification of such small palmprint regions with such large number of classes.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Zhang, D., Kong, A.W.K., You, J., Wong, M.: Online palmprint identification. IEEE Trans. Pattern Anal. Mach. Intell. 25, 1041–1050 (2003)
Shu, W., Rong, G., Bian, Z., Zhang, D.: Automatic palmprint verification. Int. J. Image Graphics 1, 135–151 (2001)
Duta, N., Jain, A.K., Mardia, K.V.: Matching of palmprints. Pattern Recognition Letters 23, 477–485 (2002)
Zhang, D., Shu, W.: Two novel characteristics in palmprint verification: datum point invariance and line feature matching. Pattern Recognition 32, 691–702 (1999)
Kong, A.W.K., Zhang, D., Li, W.: Palmprint feature extraction using 2-D gabor filters. Pattern Recognition 36, 2339–2347 (2003)
Wu, X., Zhang, D., Wang, K.: Fisherpalms based palmprint recognition. Pattern Recognition Letters 24, 2829–2838 (2003)
You, J., Kong, A.W.K., Zhang, D., Cheung, K.H.: On hierarchical palmprint coding with multiple features for personal identification in large databases. IEEE Trans. Circuits Syst. Video Techn. 14, 234–243 (2004)
Kong, A.W.-K., Zhang, D.: Feature-level fusion for effective palmprint authentication. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 761–767. Springer, Heidelberg (2004)
Zhang, L., Zhang, D.: Characterization of palmprints by wavelet signatures via directinal context modeling. IEEE Trans. Syst. Man, and Cyber. B 34, 1335–1347 (2004)
Vijaya Kumar, B.: Tutorial survey of composite filter designs for optical correlators. Applied Optics 31, 4773–4801 (1992)
Hennings, P., Vijaya Kumar, B.: Palmprint recognition using correlation filter classifiers. In: Proc. of 38th Annual Asilomar Conference on Signals, Systems, and Computers, vol. 1, pp. 567–571 (2004)
Vijaya Kumar, B., Savvides, M., Venkataramani, K., Xie, C., Thornton, J., Mahalanobis, A.: Biometric verification using advanced correlation filters. ao 43, 391–402 (1992)
Savvides, M.: Reduced Complexity Face Recognition using Advanced Correlation Filters and Fourier Subspace Methods for Biometric Applications. PhD thesis, Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA (2004)
Venkataramani, K.: Reduced complexity correlation filters for fingerprint verification. Master’s thesis, Carnegie Mellon University (2002)
Mahalanobis, A., Vijaya Kumar, B., Casasent, D.: Minimum average correlation energy filters. Applied Optics 26, 3633–3640 (1987)
Vijaya Kumar, B.: Minimum-variance synthetic discriminant functions. J. of Opt. Soc. Am. A 3, 1579–1584 (1986)
Refregier, P.: Filter design for optical pattern recognition: multicriteria optimization approach. olet 15, 854–856 (1990)
The PolyU Palmprint Database, http://www.comp.polyu.edu.hk/~biometrics
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hennings, P., Savvides, M., Kumar, B.V.K.V. (2005). Verification of Biometric Palmprint Patterns Using Optimal Trade-Off Filter Classifiers. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2005. Lecture Notes in Computer Science, vol 3656. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11559573_131
Download citation
DOI: https://doi.org/10.1007/11559573_131
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29069-8
Online ISBN: 978-3-540-31938-2
eBook Packages: Computer ScienceComputer Science (R0)