Abstract
We present a theoretical model for self-assembling tiles with flexible branches motivated by DNA branched junction molecules. We encode an instance of a “problem” as a pot of such tiles, and a “solution” as an assembled complete complex without any free sticky ends (called ports), whose number of tiles is within predefined bounds. We develop an algebraic representation of this self-assembly process and use it to prove that this model of self-assembly precisely captures NP-computability when the number of tiles in the minimal complete complexes is bounded by a polynomial.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adleman, L.: Molecular computation of solutions of combinatorial problems. Science 266, 1021–1024 (1994)
Adleman, L.M., Cheng, Q., Goel, A., Huang, M.-D., Kempe, D., Moisset de Espanés, P., Rothemund, P.W.K.: Combinatorial optimization problems in self-assembly. In: STOC 2002 Proceedings, Montreal Quebec, Canada (2002)
Adleman, L.M., Kari, J., Kari, L., Reishus, D.: On the decidability of self-assembly of infinite ribbons. In: Proceedings of FOCS 2002, IEEE Symposium on Foundations of Computer Science, Washington, pp. 530–537 (2002)
Borosh, I., Treybig, L.B.: Bounds on the positive integral solutions of linear Diophantine equations. Proc. Amer. Math. Soc. 55, 299–304 (1976)
Braich, R.S., Chelyapov, N., Johnson, C., Rothemund, P.W.K., Adleman, L.: Solution of a 20-variable 3-SAT problem on a DNA Computer. Science 296, 499–502 (2002)
Chen, J.H., Seeman, N.C.: Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350, 631–633 (1991)
Cook, S.: The complexity of theorem proving procedures. In: Proc. 3rd. ACM Ann. Symp. Theory of Comput., pp. 151–158 (1971)
Ebbinghaus, H.-D., Flum, J.: Finite Model Theory, 2nd edn. Springer, Heidelberg (1999)
Fagin, R.: Contributions to the Model Theory of Finite Structures, UC Berkeley Ph.D. Thesis (1973)
Faulhammer, D., Curkas, A.R., Lipton, R.J., Landweber, L.F.: Molecular computation: RNA solution to chess problems. PNAS 97, 1385–1389 (2000)
Fu, T.J., Seeman, N.C.: DNA double crossover structures. Biochemistry 32, 3211–3220 (1993)
Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory of NP-completeness. W. H. Freeman, New York (1979)
Head, T., et al.: Computing with DNA by operating on plasmids. BioSystems 57, 87–93 (2000)
Immerman, N.: Descriptive Complexity Theory. Springer, Heidelberg (1999)
Jonoska, N., Sa-Ardyen, P., Seeman, N.C.: Computation by self-assembly of DNA graphs. Genetic Programming and Evolvable Machines 4, 123–137 (2003)
Jonoska, N., Karl, S., Saito, M.: Three dimensional DNA structures in computing. BioSystems 52, 143–153 (1999)
Jonoska, N., Karl, S., Saito, M.: Creating 3-dimensional graph structures with DNA. In: Rubin, H., Wood, D. (eds.) DNA based computers III. AMS DIMACS series, vol. 48, pp. 123–136 (1999)
Jonoska, N., McColm, G., Staninska, A.: Expectation and Variance of Self-Assembled Graph Structures. In: Proceedings of 11th International Meeting on DNA Computing, London, Ontario, Canada, June 6-9, pp. 49–58 (2005)
Jonoska, N., McColm, G.: On a Model of Computation by Self-Assembly (in preparation)
Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, W.E. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)
Kao, M.-Y., Ramachandran, V.: DNA self-assembly for constructing 3D boxes. In: Eades, P., Takaoka, T. (eds.) ISAAC 2001. LNCS, vol. 2223, pp. 429–440. Springer, Heidelberg (2001)
LaBean, T.H., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, J.H., Seeman, N.C.: J. Am. Chem. Soc. 122, 1848–1860 (2000)
Lehn, J.M.: Sopramolecular Chemistry. Science 260, 1762–1763 (1993)
Lehn, J.M.: Toward complex matter: Supramolecular chemistry and self-organization. Proceedings of the National Academy of Science USA 99(8), 4763–4768 (2002)
Mao, C., LaBean, T.H., Reif, J.H., Seeman, N.C.: Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. Nature 407, 493–496 (2000)
Mao, C., Sun, W., Shen, Z., Seeman, N.C.: A nanomechanical device based on the B-Z transition of DNA. Nature 397, 144–146 (1999)
Reif, J.H., Sahu, S., Yin, P.: Complexity of Graph Self-Assembly in Accretive Systems and Self-Destructive Systems. In: Proceedings of 11th International Meeting on DNA Computing, London, Ontario, Canada, June 6-9, pp. 101–112 (2005)
Rothemund, P.W.K., Winfree, E.: The Program-Size Complexity of Self-Assembled Squares. In: Proceedings of 33rd ACM meeting STOC 2001, Portland, Oregon, May 21-23, pp. 459–468 (2001)
Rothemund, P., Papadakis, N., Winfree, E.: Algorithmic Self-assembly of DNA Sierpinski Triangles. PLoS Biology 2(12), e424 (2004) (13 pages)
Sa-Ardyen, P., Jonoska, N., Seeman, N.: Self-assembly of graphs represented by DNA helix axis topology. J. Am. Chem. Soc. 126(21), 6648–6657 (2004)
Seeman, N.C.: DNA junctions and lattices. J. Theor. Biol. 99, 237–247 (1982)
Seeman, N.C.: DNA nicks and nodes and nanotechnology. NanoLetters 1, 22–26 (2001)
Shihn, W.M., Quispe, J.D., Joyce, G.F.: A 1.7-kilobase single-stranded DNA folds into a nano-scale octahedron. Nature 427, 618–621 (2004)
Soloveichik, D., Winfree, E.: Complexity of Self-Assembled Shapes, preprint at, http://arxiv.org/abs/cs.CC/0412096
Wang, Y., Mueller, J.E., Kemper, B., Seeman, N.C.: The assembly and characterization of 5-arm and 6-arm DNA junctions. Biochemistry 30, 5667–5674 (1991)
Winfree, E., Yang, X., Seeman, N.C.: Universal computation via self-assembly of DNA: some theory and experiments. In: Landweber, L., Baum, E. (eds.) DNA based computers II. AMS DIMACS series, vol. 44, pp. 191–214 (1998)
Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998)
Yan, H., Zhang, X., Shen, Z., Seeman, N.C.: A robust DNA mechanical device controlled by hybridization topology. Nature 415, 62–65 (2002)
Yurke, B., Turberfield, A.J., Mills, A.P., Simmel Jr, F.C.: A DNA fueled molecular machine made of DNA. Nature 406, 605–608 (2000)
Zhang, Y., Seeman, N.C.: The construction of a DNA truncated octahedron. J. Am. Chem. Soc. 160, 1661–1669 (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jonoska, N., McColm, G.L. (2005). A Computational Model for Self-assembling Flexible Tiles. In: Calude, C.S., Dinneen, M.J., Păun, G., Pérez-Jímenez, M.J., Rozenberg, G. (eds) Unconventional Computation. UC 2005. Lecture Notes in Computer Science, vol 3699. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11560319_14
Download citation
DOI: https://doi.org/10.1007/11560319_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29100-8
Online ISBN: 978-3-540-32022-7
eBook Packages: Computer ScienceComputer Science (R0)