Abstract
An F- labeling scheme is composed of a marker algorithm for labeling the vertices of a graph with short labels, coupled with a decoder algorithm allowing one to compute F(u,v) of any two vertices u and v directly from their labels. As applications for labeling schemes concern mainly large and dynamically changing networks, it is of interest to study distributed dynamic labeling schemes.
A general method for constructing labeling schemes for dynamic trees was previously developed in [28]. This method is based on extending an existing static tree labeling scheme to the dynamic setting. This approach fits many natural functions on trees, such as distance, routing, nearest common ancestor etc.. The resulted dynamic schemes incur overheads (over the static scheme) on the label size and on the communication complexity. In particular, all their schemes yield a multiplicative overhead factor of Ω(log n) on the label sizes of the static schemes. Following [28], we develop a different general method for extending static labeling schemes to the dynamic tree settings. Our method fits the same class of tree functions. In contrast to the above paper, our trade-off is designed to minimize the label size on expense of communication.
Informally, for any k we present a dynamic labeling scheme incurring multiplicative overhead factors (over the static scheme) of O(log k n) on the label size and O(klog k n) on the amortized message complexity. In particular, by setting \(k = \sqrt{n}\), we obtain dynamic labeling schemes with asymptotically optimal label sizes and sublinear amortized message complexity for the routing and the nearest common ancestor functions.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Afek, Y., Awerbuch, B., Plotkin, S.A., Saks, M.: Local management of a global resource in a communication. J. of the ACM 43, 1–19 (1996)
Alstrup, S., Bille, P., Rauhe, T.: Labeling schemes for small distances in trees. In: Proc. 14th ACM-SIAM Symp. on Discrete Algorithms (January 2003)
Alstrup, S., Gavoille, C., Kaplan, H., Rauhe, T.: Nearest Common Ancestors: A Survey and a new Distributed Algorithm. Theory of Computing Systems 37, 441–456 (2004)
Alstrup, S., Holm, J., Thorup, M.: Maintaining Center and Median in Dynamic Trees. In: Halldórsson, M.M. (ed.) SWAT 2000. LNCS, vol. 1851, p. 46. Springer, Heidelberg (2000)
Abiteboul, S., Kaplan, H., Milo, T.: Compact labeling schemes for ancestor queries. In: Proc. 12th ACM-SIAM Symp. on Discrete Algorithms (January 2001)
Alstrup, S., Rauhe, T.: Improved Labeling Scheme for Ancestor Queries. In: Proc. 19th ACM-SIAM Symp. on Discrete Algorithms (January 2002)
Breuer, M.A., Folkman, J.: An unexpected result on coding the vertices of a graph. J. of Mathematical Analysis and Applications 20, 583–600 (1967)
Breuer, M.A.: Coding the vertexes of a graph. IEEE Trans. on Information Theory IT-12, 148–153 (1966)
Cole, R., Hariharan, R.: Dynamic LCA Queries on Trees. In: Proc. 10th ACM-SIAM Symp. on Discrete Algorithms, pp. 235–244 (1999)
Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and Distance Queries via 2-hop Labels. In: Proc. 13th ACM-SIAM Symp. on Discrete Algorithms (January 2002)
Cohen, E., Kaplan, H., Milo, T.: Labeling dynamic XML trees. In: Proc. 21st ACM Symp. on Principles of Database Systems (June 2002)
Eppstein, D., Galil, Z., Italiano, G.F.: Dynamic Graph Algorithms. In: Atallah, M.J. (ed.) Algorithms and Theoretical Computing Handbook, ch. 8. CRC Press, Boca Raton (1999)
Fraigniaud, P., Gavoille, C.: Routing in trees. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 757–772. Springer, Heidelberg (2001)
Fraigniaud, P., Gavoille, C.: A space lower bound for routing in trees. In: Proc. 19th Symp. on Theoretical Aspects of Computer Science (March 2002)
Feigenbaum, J., Kannan, S.: Dynamic Graph Algorithms. In: Handbook of Discrete and Combinatorial Mathematics. CRC Press, Boca Raton (2000)
Gavoille, C., Paul, C.: Split decomposition and distance labelling: an optimal scheme for distance hereditary graphs. In: Proc. European Conf. on Combinatorics, Graph Theory and Applications (September 2001)
Gavoille, C., Peleg, D.: Compact and Localized Distributed Data Structures. J. of Distributed Computing 16, 111–120 (2003)
Gavoille, C., Katz, M., Katz, N.A., Paul, C., Peleg, D.: Approximate Distance Labeling Schemes. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 476–488. Springer, Heidelberg (2001)
Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance labeling in graphs. In: Proc. 12th ACM-SIAM Symp. on Discrete Algorithms, January 2001, pp. 210–219 (2001)
Holm, J., Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. J. of the ACM 48(4), 723–760 (2001)
Kannan, S., Naor, M., Rudich, S.: Implicit representation of graphs. In: Proc. 20th ACM Symp. on Theory of Computing, May 1988, pp. 334–343 (1988)
Kaplan, H., Milo, T.: Short and simple labels for small distances and other functions. In: Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, p. 246. Springer, Heidelberg (2001)
Kaplan, H., Milo, T.: Parent and ancestor queries using a compact index. In: Proc. 20th ACM Symp. on Principles of Database Systems (May 2001)
Kaplan, H., Milo, T., Shabo, R.: A Comparison of Labeling Schemes for Ancestor Queries. In: Proc. 19th ACM-SIAM Symp. on Discrete Algorithms (January 2002)
Katz, M., Katz, N.A., Korman, A., Peleg, D.: Labeling schemes for flow and connectivity. In: Proc. 19th ACM-SIAM Symp. on Discrete Algorithms (January 2002)
Katz, M., Katz, N.A., Peleg, D.: Distance labeling schemes for well-separated graph classes. In: Proc. 17th Symp. on Theoretical Aspects of Computer Science, February 2000, pp. 516–528 (2000)
Korman, A., Peleg, D.: Labeling Schemes for Weighted Dynamic Trees. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719. Springer, Heidelberg (2003)
Korman, A., Peleg, D., Rodeh, Y.: Labeling schemes for dynamic tree networks. Theory of Computing Systems 37, 49–75 (2004)
Peleg, D.: Proximity-preserving labeling schemes and their applications. In: Widmayer, P., Neyer, G., Eidenbenz, S. (eds.) WG 1999. LNCS, vol. 1665, pp. 30–41. Springer, Heidelberg (1999)
Peleg, D.: Informative labeling schemes for graphs. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 579–588. Springer, Heidelberg (2000)
Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM, Philadelphia (2000)
Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. Journal of Computer and System Sciences 26(1), 362–391 (1983)
Santoro, N., Khatib, R.: Labelling and implicit routing in networks. The Computer Journal 28, 5–8 (1985)
Thorup, M.: Compact oracles for reachability and approximate distances in planar digraphs. J. of the ACM 51, 993–1024 (2004)
Thorup, M., Zwick, U.: Compact routing schemes. In: Proc. 13th ACM Symp. on Parallel Algorithms and Architecture, Hersonissos, Crete, Greece, July 2001, pp. 1–10 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Korman, A. (2005). General Compact Labeling Schemes for Dynamic Trees. In: Fraigniaud, P. (eds) Distributed Computing. DISC 2005. Lecture Notes in Computer Science, vol 3724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11561927_33
Download citation
DOI: https://doi.org/10.1007/11561927_33
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29163-3
Online ISBN: 978-3-540-32075-3
eBook Packages: Computer ScienceComputer Science (R0)