Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Topic-Independent Web High-Quality Page Selection Based on K-Means Clustering

  • Conference paper
Information Retrieval Technology (AIRS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3689))

Included in the following conference series:

Abstract

One of the web search engines’ challenges is to identify the quality of web pages independent of a given user request. Web high-quality pages provide readers proper entries to get more concentrated required information on the web. This paper focuses on topic-independent web high-quality page selection to reduce web information redundancies and clean noise. Different non-content features and their effects on high-quality page selection are studied. Then K-means clustering with these features is performed to separate high-quality pages from common ones. Experiments on 19GB (document size) TREC web data set (.GOV data) have been made. By this proposed approach, less than 50% of web pages are obtained as high-quality ones, covering about 90% key information in the whole set. Information retrieval on this high-quality page set achieves more than 40% improvement, compared with that on the whole data collection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Davison, B.D.: Topical locality in the web. In: Croft, W.B., Harper, D.J., Kraft, D.H., Zobel, J. (eds.) Proceedings of the 23rd Annual International Conference on Research and Development in Information Retrieval, pp. 272–279 (2000)

    Google Scholar 

  2. Zhang, M., Lin, C., Liu, Y., Zhao, L., Ma, L., Ma, S.: THUIR at TREC 2003: Novelty, Robust, Web and HARD (2003)

    Google Scholar 

  3. Hawking, D., Craswell, N.: Overview of the TREC-2002 web track. In: Voorhees and Buckland (2002)

    Google Scholar 

  4. Hawking, D., Craswell, N.: Overview of the TREC 2003 web track, 2003. In: NIST Special Publication: SP 500-255, The Twelfth Text Retrieval Conference (2003)

    Google Scholar 

  5. Lozano, J.A., Pena, J.M., Larranaga, P.: An empirical comparison of four initialization methods for the k-means algorithm. Pattern Recognition Lett. 20, 1027–1040 (1999)

    Article  Google Scholar 

  6. Bharat, K., Henzinger, M.: Improved algorithms for topic distillation in a hyperlinked environment. In: 21st International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 104–111 (August 1998)

    Google Scholar 

  7. Henzinger, M.R., Motwani, R., Silverstein, C.: Challenges in Web Search Engines. In: proceedings of the International Joint Conference on Artificial Intelligence (2003)

    Google Scholar 

  8. Craswell, N., Hawking, D.: Query-independent evidence in home page finding. ACM Transactions on Information Systems (TOIS) archive 21(3), 286–313 (2003); table of contents

    Google Scholar 

  9. Westerveld, T., Hiemstra, D., Kraaij, W.: Retrieving Web Pages Using Content, Links, URLs and Anchors. In: Voorhees and Harman, pp. 663–672 (2002)

    Google Scholar 

  10. Kraaij, W., Westerveld, T., Hiemstra, D.: The importance of prior probabilities for entry page search. In: 25th annual international ACM SIGIR conference on research and development in information retrieval, pp. 27–34 (2002)

    Google Scholar 

  11. Likas, A., Vlassis, N., Verbeek, J.J.: The global k-means clustering algorithm. Pattern Recognition (2003)

    Google Scholar 

  12. Liu, Y., Zhang, M., Ma, S.: Effective topic distillation with key resource pre-selection. In: Proceedings of the Asia Information Retrieval Symposium (2004)

    Google Scholar 

  13. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.: The analysis of a simple k-means clustering algorithm. In: Symposium on Computational Geometry (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, C., Liu, Y., Zhang, M., Ma, S. (2005). Topic-Independent Web High-Quality Page Selection Based on K-Means Clustering. In: Lee, G.G., Yamada, A., Meng, H., Myaeng, S.H. (eds) Information Retrieval Technology. AIRS 2005. Lecture Notes in Computer Science, vol 3689. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11562382_43

Download citation

  • DOI: https://doi.org/10.1007/11562382_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29186-2

  • Online ISBN: 978-3-540-32001-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics