Abstract
This paper proposes a unified framework for outlier detection in high dimensional spaces from an ensemble-learning viewpoint. Moreover, to demonstrate the usefulness of our framework, we developed a very simple and fast algorithm, namely SOE1, in which only subspaces with one dimension is used for mining outliers from large categorical datasets. Experimental results demonstrate the superiority of SOE1 algorithm.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
He, Z., Xu, X., Huang, J., Deng, S.: A Frequent Pattern Discovery Based Method for Outlier Detection. In: Li, Q., Wang, G., Feng, L. (eds.) WAIM 2004. LNCS, vol. 3129, pp. 726–732. Springer, Heidelberg (2004)
He, Z., Xu, X., Deng, S.: Discovering Cluster Based Local Outliers. Pattern Recognition Letters 24(9-10), 1641–1650 (2003)
Ramaswamy, S., Rastogi, R., Kyuseok, S.: Efficient Algorithms for Mining Outliers from Large Data Sets. In: Proc. of SIGMOD 2000, pp. 93–104 (2000)
Aggarwal, C., Yu, P.: Outlier Detection for High Dimensional Data. In: Proc. of SIGMOD 2001, pp. 37-46 (2001)
Merz, G., Murphy, P.: Uci Repository of Machine Learning Databases (1996), http://www.ics.uci.edu/~mlearn/MLRepository.html
Harkins, S., et al.: Outlier Detection Using Replicator Neural Networks. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK 2002. LNCS, vol. 2454, pp. 170–180. Springer, Heidelberg (2002)
He, Z., Xu, X., Huang, J., Deng, S.: Mining Class Outliers: Concepts, Algorithms and Applications in CRM. Expert System With Applications 27(4), 681–697 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
He, Z., Deng, S., Xu, X. (2005). A Unified Subspace Outlier Ensemble Framework for Outlier Detection. In: Fan, W., Wu, Z., Yang, J. (eds) Advances in Web-Age Information Management. WAIM 2005. Lecture Notes in Computer Science, vol 3739. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11563952_56
Download citation
DOI: https://doi.org/10.1007/11563952_56
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29227-2
Online ISBN: 978-3-540-32087-6
eBook Packages: Computer ScienceComputer Science (R0)