Abstract
We present a propagator which we call Reachability that implements a generalized reachability constraint on a directed graph g. Given a source node source in g, we can identify three parts in the Reachability constraint: (1) the relation between each node of g and the set of nodes that it reaches, (2) the association of each pair of nodes 〈source,i 〉 with its set of cut nodes, and (3) the association of each pair of nodes 〈source,i 〉 with its set of bridges.
Similar content being viewed by others
References
Dooms, G., Deville, Y., Dupont, P.: CP(Graph): Introducing a graph computation domain in constraint programming. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 211–225. Springer, Heidelberg (2005)
Consortium, M.: The Mozart Programming System, version 1.3.0 (2004), Available at http://www.mozart-oz.org/
Quesada, L., Von Roy, P., Deville, Y.: Reachability: a constrained path propagator implemented as a multi-agent system. In: CLEI 2005 Proceedings (2005)
Quesada, L., Von Roy, P., Deville, Y.: The reachability propagator. Research Report INFO-2005-07, Université catholique de Louvain, Louvain-la-Neuve, Belgium (2005), Available at http://www.info.ucl.ac.be/~luque/SPMN/paper.pdf
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Quesada, L., Van Roy, P., Deville, Y. (2005). Speeding Up Constrained Path Solvers with a Reachability Propagator. In: van Beek, P. (eds) Principles and Practice of Constraint Programming - CP 2005. CP 2005. Lecture Notes in Computer Science, vol 3709. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11564751_104
Download citation
DOI: https://doi.org/10.1007/11564751_104
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29238-8
Online ISBN: 978-3-540-32050-0
eBook Packages: Computer ScienceComputer Science (R0)