Abstract
For practical reasons, most scheduling problems are an abstraction of the real problem being solved. For example, when you plan your day, you schedule the activities which are critical; that is you schedule the activities which are essential to the success of your day. So you may plan what time to leave the house to get to work, when to have meetings, how you share your vehicle with your spouse and so on. On the other hand, you probably do not consider the activities that are easy to arrange like brushing your teeth, going to the shops, making photocopies and other such tasks that can usually be accomplished whenever you have the time available. Scheduling all of these activities at once is often too complicated. Instead, a simpler schedule is produced by considering only the critical activities. However, if a schedule goes wrong, it is often because an activity turned out to be critical but was not scheduled. We typically learn which activities are critical by experience and create an abstract scheduling problem which includes all known critical activities. Instead of scheduling the non-critical activities we estimate their effects in the abstract scheduling problem.
This work has received support from Science Foundation Ireland under Grant 00/PI.1/C075, Irish Research Council for Science, Engineering, and Technology under Grant SC/2003/82, and ILOG, SA.
Similar content being viewed by others
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Carchrae, T., Beck, J.C., Freuder, E.C. (2005). Methods to Learn Abstract Scheduling Models. In: van Beek, P. (eds) Principles and Practice of Constraint Programming - CP 2005. CP 2005. Lecture Notes in Computer Science, vol 3709. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11564751_80
Download citation
DOI: https://doi.org/10.1007/11564751_80
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29238-8
Online ISBN: 978-3-540-32050-0
eBook Packages: Computer ScienceComputer Science (R0)