Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

What Makes the Arc-Preserving Subsequence Problem Hard?

  • Conference paper
Transactions on Computational Systems Biology II

Part of the book series: Lecture Notes in Computer Science ((TCSB,volume 3680))

Abstract

In molecular biology, RNA structure comparison and motif search are of great interest for solving major problems such as phylogeny reconstruction, prediction of molecule folding and identification of common functions. RNA structures can be represented by arc-annotated sequences (primary sequence along with arc annotations), and this paper mainly focuses on the so-called arc-preserving subsequence (APS) problem where, given two arc-annotated sequences (S,P) and (T,Q), we are asking whether (T, Q) can be obtained from (S, P) by deleting some of its bases (together with their incident arcs, if any). In previous studies, this problem has been naturally divided into subproblems reflecting the intrinsic complexity of the arc structures. We show that APS(Crossing, Plain) is NP-complete, thereby answering an open problem posed in . Furthermore, to get more insight into where the actual border between the polynomial and the NP-complete cases lies, we refine the classical subproblems of the APS problem in much the same way as in  and prove that both APS \((\{\sqsubset, \between\}, \emptyset)\) and APS \((\{<, \between\}, \emptyset)\) are NP-complete. We end this paper by giving some new positive results, namely showing that APS \((\{\between\}, \emptyset)\) and APS( \((\{\between\}, \{\between\})\) are polynomial time.

This work was partially supported by the French-Italian PAI Galileo project number 08484VH and by the CNRS project ACI Masse de Données ”NavGraphe”. A preliminary version of this paper appeared in the Proc. of IWBRA’05, Springer, V.S. Sunderam et al. (Eds.): ICCS 2005, LNCS 3515, pp. 860-868, 2005.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alber, J., Gramm, J., Guo, J., Niedermeier, R.: Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time. In: Apostolico, A., Takeda, M. (eds.) CPM 2002. LNCS, vol. 2373, pp. 99–114. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Alber, J., Gramm, J., Guo, J., Niedermeier, R.: Computing the similarity of two sequences with nested arc annotations. Theoretical Computer Science 312(2-3), 337–358 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Billoud, B., Guerrucci, M.-A., Masselot, M., Deutsch, J.S.: Cirripede phylogeny using a novel approach: Molecular morphometrics. Molecular Biology and Evolution 19, 138–148 (2000)

    Google Scholar 

  4. Caetano-Anolls, G.: Tracing the evolution of RNA structure in ribosomes. Nucl. Acids. Res. 30, 2575–2587 (2002)

    Article  Google Scholar 

  5. Chaia, W., Stewart, V.: RNA Sequence Requirements for NasR-mediated, Nitrate-responsive Transcription Antitermination of the Klebsiella oxytoca M5al nasF Operon Leader. Journal of Molecular Biology 292, 203–216 (1999)

    Article  Google Scholar 

  6. Evans, P.: Algorithms and Complexity for Annotated Sequence Analysis. PhD thesis, U. Victoria (1999)

    Google Scholar 

  7. Evans, P.: Finding common subsequences with arcs and pseudoknots. In: Crochemore, M., Paterson, M. (eds.) CPM 1999. LNCS, vol. 1645, pp. 270–280. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  8. Farris, A.D., Koelsch, G., Pruijn, G.J., van Venrooij, W.J., Harley, J.B.: Conserved features of Y RNAs revealed by automated phylogenetic secondary structure analysis. Nucl. Acids. Res. 27, 1070–1078 (1999)

    Article  Google Scholar 

  9. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York (1979)

    Google Scholar 

  10. Goldman, D., Istrail, S., Papadimitriou, C.H.: Algorithmic aspects of protein structure similarity. In: Proc. of the 40th Symposium of Foundations of Computer Science (FOCS 1999), pp. 512–522 (1999)

    Google Scholar 

  11. Gramm, J., Guo, J., Niedermeier, R.: Pattern matching for arc-annotated sequences. In: Agrawal, M., Seth, A.K. (eds.) FSTTCS 2002. LNCS, vol. 2556, pp. 182–193. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Guo, J.: Exact algorithms for the longest common subsequence problem for arc-annotated sequences. Master’s Thesis, Universitat Tubingen, Fed. Rep. of Germany (2002)

    Google Scholar 

  13. Hellendoorn, K., Michiels, P.J., Buitenhuis, R., Pleij, C.W.: Protonatable hairpins are conserved in the 5’-untranslated region of tymovirus RNAs. Nucl. Acids. Res. 24, 4910–4917 (1996)

    Article  Google Scholar 

  14. Hofacker, L., Fekete, M., Flamm, C., Huynen, M.A., Rauscher, S., Stolorz, P.E., Stadler, P.F.: Automatic detection of conserved RNA structure elements in complete RNA virus genomes. Nucl. Acids. Res. 26, 3825–3836 (1998)

    Article  Google Scholar 

  15. Jiang, T., Lin, G.-H., Ma, B., Zhang, K.: The longest common subsequence problem for arc-annotated sequences. In: Giancarlo, R., Sankoff, D. (eds.) CPM 2000. LNCS, vol. 1848, pp. 154–165. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  16. Juan, V., Crain, C., Wilson, S.: Evidence for evolutionarily conserved secondary structure in the H19 tumor suppressor RNA. Nucl. Acids. Res. 28, 1221–1227 (2000)

    Article  Google Scholar 

  17. Lancia, G., Carr, R., Walenz, B., Istrail, S.: 101 optimal PDB structure alignments: a branch-and-cut algorithm for the maximum contact map overlap problem. In: Proceedings of the 5th ACM International Conference on Computational Molecular Biology (RECOMB 2001), pp. 193–202 (2001)

    Google Scholar 

  18. Teunissen, S.W.M., Kruithof, M.J.M., Farris, A.D., Harley, J.B., van Venrooij, W.J., Pruijn, G.J.M.: Conserved features of Y RNAs: a comparison of experimentally derived secondary structures. Nucl. Acids. Res. 28, 610–619 (2000)

    Article  Google Scholar 

  19. Vialette, S.: Pattern matching over 2-intervals sets. In: Apostolico, A., Takeda, M. (eds.) CPM 2002. LNCS, vol. 2373, pp. 53–63. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  20. Vialette, S.: On the computational complexity of 2-interval pattern matching. Theoretical Computer Science 312(2-3), 223–249 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Wang, H.-Y., Lee, S.-C.: Secondary structure of mitochondrial 12S rRNA among fish and its phylogenetic applications. Molecular Biology and Evolution 19, 138–148 (2002)

    Google Scholar 

  22. Wuyts, J., De Rijk, P., Van de Peer, Y., Pison, G., Rousseeuw, P., De Wachter, R.: Comparative analysis of more than 3000 sequences reveals the existence of two pseudoknots in area V4 of eukaryotic small subunit ribosomal RNA. Nucl. Acids. Res. 28, 4698–4708 (2000)

    Article  Google Scholar 

  23. Zhang, K., Wang, L., Ma, B.: Computing the similarity between RNA structures. In: Crochemore, M., Paterson, M. (eds.) CPM 1999. LNCS, vol. 1645, pp. 281–293. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  24. Zuker, M.: RNA folding. Meth. Enzymology 180, 262–288 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Blin, G., Fertin, G., Rizzi, R., Vialette, S. (2005). What Makes the Arc-Preserving Subsequence Problem Hard?. In: Priami, C., Zelikovsky, A. (eds) Transactions on Computational Systems Biology II. Lecture Notes in Computer Science(), vol 3680. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11567752_1

Download citation

  • DOI: https://doi.org/10.1007/11567752_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29401-6

  • Online ISBN: 978-3-540-31661-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics