Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Protein Secondary Structure Classifiers Fusion Using OWA

  • Conference paper
Biological and Medical Data Analysis (ISBMDA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3745))

Included in the following conference series:

Abstract

The combination of classifiers has been proposed as a method to improve the accuracy achieved by a single classifier. In this study, the performances of optimistic and pessimistic ordered weighted averaging operators for protein secondary structure classifiers fusion have been investigated. Each secondary structure classifier outputs a unique structure for each input residue. We used confusion matrix of each secondary structure classifier as a general reusable pattern for converting this unique label to measurement level. The results of optimistic and pessimistic OWA operators have been compared with majority voting and five common classifiers used in the fusion process. Using a benchmark set from the EVA server, the results showed a significant improvement in the average Q3 prediction accuracy up to 1.69% toward the best classifier results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Argos, P., Hanei, M., Garavito, R.M.: The Chou-Fasman secondary structure prediction method with an extended database. FEBS Lett. 93(1), 19–24 (1978)

    Article  Google Scholar 

  2. Cai, Y.D., Liu, X.J., Chou, K.C.: Prediction of protein secondary structure content by artificial neural network. J. Comput. Chem. 24(6), 727–731 (2003)

    Article  Google Scholar 

  3. Kim, S.: Protein beta-turn prediction using nearest-neighbor method. Bioinformatics 20(1), 40–44 (2004)

    Article  Google Scholar 

  4. Ho, T.H., Hull, J.J., Srihari, S.N.: Decision Combination in Multiple Classifier System. IEEE Transactions on Pattern Analysis and Machine Intelligence 16(1), 66–75 (1994)

    Article  Google Scholar 

  5. Ruta, D., Gabrys, B.: An Overview of Classifier Fusion Methods. Computing and Information Systems 7, 1–10 (2000)

    Google Scholar 

  6. Xu, L., Krzyzak, A., Suen, C.Y.: Methods of Combining Multiple Classifiers and their Applications to Handwriting Recognition. IEEE Trans. SMC 22(3), 418–435 (1992)

    Google Scholar 

  7. Robles, V., Larranaga, P., Pena, J.M., Menasalvas, E., Perez, M.S., Herves, V., Wasilewska, A.: Bayesian network multi-classifiers for protein secondary structure prediction. Artif. Intell. Med. 31(2), 117–136 (2004)

    Article  Google Scholar 

  8. Parker, J.R.: Rank and response combination from confusion matrix data. Information Fusion 2(2), 113–120 (2001)

    Article  Google Scholar 

  9. Yager, R.R.: On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE transactions on Systems, Man and Cybernetics 18, 183–190 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  10. Rost, B., Eyrich, V.A.: EVA: large-scale analysis of secondary structure prediction. Proteins 5, 192–199 (2001)

    Article  Google Scholar 

  11. Raghava, G.P.S.: Protein secondary structure prediction using nearest neighbor and neural network approach. CASP 4, 75–76 (2000)

    Google Scholar 

  12. Rost, B.: PROF: predicting one-dimensional protein structure by profile based neural networks, http://cubic.bioc.columbia.edu/predictprotein

  13. Jones, D.T.: Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292, 195–202 (1999)

    Article  Google Scholar 

  14. Karplus, K., Barrett, C., Hughey, R.: Hidden Markov Models for Detecting Remote Protein Homologies. Bioinformatics 14, 846–856 (1998)

    Article  Google Scholar 

  15. Pollastri, G., Przybylski, D., Rost, B., Baldi, P.: Improving the Prediction of Protein Secondary Structure in Three and Eight Classes Using Recurrent Neural Networks and Profiles. Proteins 47, 228–235 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kazemian, M., Moshiri, B., Nikbakht, H., Lucas, C. (2005). Protein Secondary Structure Classifiers Fusion Using OWA. In: Oliveira, J.L., Maojo, V., Martín-Sánchez, F., Pereira, A.S. (eds) Biological and Medical Data Analysis. ISBMDA 2005. Lecture Notes in Computer Science(), vol 3745. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11573067_34

Download citation

  • DOI: https://doi.org/10.1007/11573067_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29674-4

  • Online ISBN: 978-3-540-31658-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics