Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Double-Cross and the Generalization Concept as a Basis for Representing and Comparing Shapes of Polylines

  • Conference paper
On the Move to Meaningful Internet Systems 2005: OTM 2005 Workshops (OTM 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3762))

Abstract

Many shape recognition techniques have been presented in literature, most of them from a quantitative perspective. Research has shown that qualitative reasoning better reflects the way humans deal with spatial reality. The current qualitative techniques are based on break points resulting in difficulties in comparing analogous relative positions along polylines. The presented shape representation technique is a qualitative approach based on division points, resulting in shape matrices forming a shape data model and thus forming the basis for a cognitively relevant similarity measure for shape representation and shape comparison, both locally and globally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bookstein, F.L.: Size and shape spaces for landmark data in two dimensions. Statistical Science 1, 181–242 (1986)

    Article  MATH  Google Scholar 

  2. Mokhtarian, F., Mackworth, A.K.: A theory of multiscale, curvature-based shape representation for planar curves. TPAMI 14, 789–805 (1992)

    Google Scholar 

  3. Dryden, I., Mardia, K.V.: Statistical Shape Analysis, p. 376. Wiley, Chichester (1998)

    MATH  Google Scholar 

  4. Kent, J.T., Mardia, K.V.: Shape, procrustes tangent projections and bilateral symmetry. Biometrika 88, 469–485 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gero, J.S.: Representation and reasoning about shapes: cognitive and computational studies in visual reasoning in design. In: Freksa, C., Mark, D.M. (eds.) COSIT 1999. LNCS, vol. 1661, pp. 315–330. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  6. Meathrel, R.C.: A General Theory of Boundary-Based Qualitative Representation of 2D Shape. PhD Thesis, UK, University of Exeter, 239 (2001)

    Google Scholar 

  7. Schlieder, C.: Qualitative shape representation, Geographic Objects with Indeterminate Boundaries, pp. 123–140. Taylor & Francis, Abington (1996)

    Google Scholar 

  8. Leyton, M.: A process-grammar for shape. Artificial Intelligence 34, 213–247 (1988)

    Article  Google Scholar 

  9. Jungert, E.: Symbolic spatial reasoning on object shapes for qualitative matching. In: Campari, I., Frank, A.U. (eds.) COSIT 1993. LNCS, vol. 716, pp. 444–462. Springer, Heidelberg (1993)

    Google Scholar 

  10. Latecki, L.J., Lakämper, R.: Shape similarity measure based on correspondence of visual parts. TPAMI 22(10), 1185–1190 (2000)

    Google Scholar 

  11. Sebastian, T., Kimia, B.: Curves vs skeletons in object recognition. In: Conf. on Image Processing, pp. 22–25 (2001)

    Google Scholar 

  12. Zhang, D.S., Lu., L.: A comparative study on shape retrieval using fourier descriptors with different shape signatures. ICIMADE, 1–9 (2001)

    Google Scholar 

  13. Gottfried, B.: Tripartite line tracks qualitative curve information. In: Kuhn, W., Worboys, M.F., Timpf, S. (eds.) COSIT 2003. LNCS, vol. 2825, pp. 101–117. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Kulik, L., Egenhofer, M.: Linearized terrain: languages for silhouette representations. In: Kuhn, W., Worboys, M.F., Timpf, S. (eds.) COSIT 2003. LNCS, vol. 2825, pp. 118–135. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Van de Weghe, N.: Representing and Reasoning about Moving Objects: A Qualitative Approach. PhD Thesis, Belgium, Ghent University, 268 (2004)

    Google Scholar 

  16. Freksa, C.: Using orientation information for qualitative spatial reasoning. In: COSIT, pp. 162–178 (1992)

    Google Scholar 

  17. Zimmermann, K., Freksa, C.: Qualitative spatial reasoning using orientation, distance, and path knowledge. Applied Intelligence 6(1), 49–58 (1996)

    Article  Google Scholar 

  18. Weld, D.S., de Kleer, J.: Readings in Qualitative Reasoning about Physical Systems, p. 720. Morgan Kaufmann, San Francisco (1990)

    Google Scholar 

  19. Cohn, A.G.: Calculi for qualitative spatial reasoning. In: AISC, pp. 124–143 (1996)

    Google Scholar 

  20. Clementini, E., Di Felice, P., Hernandez, D.: Qualitative representation of positional information. Artificial Intelligence 95(2), 317–356 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  21. Winter, S.: Location similarity in regions. Journal of Photogrammetry and Remote Sensing 55(3), 189–200 (2000)

    Article  MathSciNet  Google Scholar 

  22. Bruns, T., Egenhofer, M.: Similarity of spatial scenes. SDH 4A, 31–42 (1996)

    Google Scholar 

  23. Nedas, K., Egenhofer, M.: Spatial similarity queries with logical operators. In: Hadzilacos, T., Manolopoulos, Y., Roddick, J., Theodoridis, Y. (eds.) SSTD 2003. LNCS, vol. 2750, pp. 430–448. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  24. Tversky, A.: Features of similarity. Psychological Review 84(4), 327–352 (1977)

    Article  Google Scholar 

  25. Goyal, R.K.: Similarity Assessment for Cardinal Directions between Extended Spatial Objects. PhD Thesis, USA, University of Maine, 167 (2000)

    Google Scholar 

  26. Claramunt, C., Thériault, M.: Fuzzy semantics for direction relations between composite regions. Information Sciences 160(1-4), 73–90 (2004)

    Article  MathSciNet  Google Scholar 

  27. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. Computing Surveys 31(3), 264–323 (1999)

    Article  Google Scholar 

  28. Nabil, M., Ngu, A.H.H., Shepherd, J.: Modeling and retrieval of moving objects. Multimedia Tools and Applications 13(1), 35–71 (2001)

    Article  MATH  Google Scholar 

  29. Latecki, L., Röhrig, R.: Orientation and qualitative angle for spatial reasoning. In: IJCAI, pp. 1544–1549 (1993)

    Google Scholar 

  30. Iwasaki, Y.: Real world applications of qualitative reasoning: introduction to the special issue. Intelligent Systems 12(3), 16–21 (1997)

    Google Scholar 

  31. Rodríguez, A., Egenhofer, M., Blaser, A.: Query pre-processing of toplogical constraints: comparing a composition-based with a neighborhood-based approach. In: Hadzilacos, T., Manolopoulos, Y., Roddick, J., Theodoridis, Y. (eds.) SSTD 2003. LNCS, vol. 2750, pp. 362–379. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  32. Egenhofer, M.: Reasoning about binary topological relations. In: GĂ¼nther, O., Schek, H.-J. (eds.) SSD 1991. LNCS, vol. 525, pp. 143–160. Springer, Heidelberg (1991)

    Google Scholar 

  33. Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. In: KR, pp. 165–176 (1992)

    Google Scholar 

  34. Allen, J.F.: Maintaining knowledge about temporal intervals. Comm. of the ACM 26(11), 832–843 (1983)

    Article  MATH  Google Scholar 

  35. Rodríguez, A., Van de Weghe, N., De Maeyer, P.: Simplifying sets of events by selecting temporal relations. In: Egenhofer, M.J., Freksa, C., Miller, H.J. (eds.) GIScience 2004. LNCS, vol. 3234, pp. 269–284. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Van de Weghe, N., De Tré, G., Kuijpers, B., De Maeyer, P. (2005). The Double-Cross and the Generalization Concept as a Basis for Representing and Comparing Shapes of Polylines. In: Meersman, R., Tari, Z., Herrero, P. (eds) On the Move to Meaningful Internet Systems 2005: OTM 2005 Workshops. OTM 2005. Lecture Notes in Computer Science, vol 3762. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11575863_131

Download citation

  • DOI: https://doi.org/10.1007/11575863_131

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29739-0

  • Online ISBN: 978-3-540-32132-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics