Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Incremental Verification of Owicki/Gries Proof Outlines Using PVS

  • Conference paper
Formal Methods and Software Engineering (ICFEM 2005)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 3785))

Included in the following conference series:

Abstract

Verifications of parallel programs are frequently based on automated state-space exploration techniques known as model checking. To avoid state-space explosion problems, theorem proving techniques can be used, for example by manually annotating programs with suitable assertions and using these assertions to prove their correctness (e.g. using the Owicki/Gries theory). We propose a method to support assertion-based methods with theorem provers like PVS. Emphasis is on the typical incremental character of assertion-based methods, and on automated strategies for proving correctness of the proof outlines.

This research is supported by the NWO under project 016.023.015: “Improving the Quality of Protocol Standards”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ábrahám, E.: An Assertional Proof System for Multithreaded Java - Theory and Tool Support. PhD thesis, Universiteit Leiden (2005)

    Google Scholar 

  2. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs (1976)

    MATH  Google Scholar 

  3. Franssen, M.: Cocktail: A tool for deriving correct programs. In: Workshop on Automated Reasoning (April 1999)

    Google Scholar 

  4. Feijen, W.H.J., van Gasteren, A.J.M.: On a method of multiprogramming. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  5. Gao, H., Groote, J.F., Hesselink, W.H.: Lock-free dynamic hash tables with open addressing. Distributed Computing 17, 21–42 (2005)

    Article  Google Scholar 

  6. Griffioen, D., Huisman, M.: A comparison of PVS and Isabelle/HOL. In: Grundy, J., Newey, M. (eds.) TPHOLs 1998. LNCS, vol. 1479, pp. 123–142. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  7. Hesselink, W.H.: Invariants for the construction of a handshake register. Information Processing Letters 68, 173–177 (1998)

    Article  Google Scholar 

  8. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications of the ACM 12(10), 576–580 (1969)

    Article  MATH  Google Scholar 

  9. Hooman, J.: Developing proof rules for distributed real-time systems with PVS. In: Workshop on Tool Support for System Development and Verification. BISS Monographs, vol. 1, pp. 120–139. Shaker, Aachen (1998)

    Google Scholar 

  10. Jacobs, B., Poll, E.: Java program verification at Nijmegen: Developments and perspective. Report NIII-R0318, University of Nijmegen (2003)

    Google Scholar 

  11. Mooij, A.J.: Formal derivations of non-blocking multiprograms. Computer Science Report 02-13, Technische Universiteit Eindhoven (October 2002)

    Google Scholar 

  12. Mooij, A.J., Wesselink, W.: A formal analysis of a dynamic distributed spanning tree algorithm. Computer Science Report 03-16, Technische Universiteit Eindhoven (December 2003)

    Google Scholar 

  13. Nipkow, T., Nieto, L.P.: Owicki/Gries in Isabelle/HOL. In: Finance, J.-P. (ed.) FASE 1999. LNCS, vol. 1577, pp. 188–203. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  14. Owicki, S., Gries, D.: An axiomatic proof technique for parallel programs I. Acta Informatica 6, 319–340 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  15. Owre, S., Rushby, J., Shankar, N.: PVS: A prototype verification system. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg (1992)

    Google Scholar 

  16. Paulson, L.C.: Isabelle: A Generic Theorem Prover. In: Isabelle. LNCS, vol. 828. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  17. Nieto, L.P.: Verification of Parallel Programs with the Owicki-Gries and Rely-Guarantee Methods in Isabelle/HOL. PhD thesis, Technische Universität München (2002)

    Google Scholar 

  18. Xu, Q., de Roever, W.-P., He, J.: The rely-guarantee method for verifying shared variable concurrent programs. Formal Aspects of Computing, 149–174 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mooij, A.J., Wesselink, W. (2005). Incremental Verification of Owicki/Gries Proof Outlines Using PVS. In: Lau, KK., Banach, R. (eds) Formal Methods and Software Engineering. ICFEM 2005. Lecture Notes in Computer Science, vol 3785. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11576280_27

Download citation

  • DOI: https://doi.org/10.1007/11576280_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29797-0

  • Online ISBN: 978-3-540-32250-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics