Abstract
Civil structures could undergo hysteresis cycles due to cracking or yielding when subjected to severe earthquake motions or even high wind. System identification techniques have been used in the past years to assess civil structures under lateral loads. The present research makes use of a polynomial artificial neural network to identify and predict, on-line, the behavior of such nonlinear structures. Simulations are carried out using the Loma Prieta and the Mexico City seismic records on two hysteretic models. Afterwards, two real seismic records acquired on a 24-story concrete building in Mexico City are used to test the proposed algorithm. Encouraging results are obtained: fast identification of the weights and fair prediction of the output acceleration.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Box, G.E.P., Jenkin, G.M.: Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco (1970)
Chen, S., Billings, A.: Representations of Nonlinear Systems: the NARMAX model. Int. J. of Control 49(3) (1989)
Gomez-Ramirez, E., Poznyak, A., Gonzalez-Yunes, A., Avila-Alvarez, M.: Adaptive Architecture of Polynomial Artificial Neural Network to Forecast Nonlinear Time Series. In: Congress on Evolutionary Computation, CEC 1999, Mayflower, Washington, D.C., USA, July 6 - 9 (1999)
Housner, G.W., Bergman, L.A., Caughey, T.K., Chassiakos, A.G., Claus, R.O., Masri, S.F., Skelton, R.E., Soong, T.T., Spencer, B.F., Yao, J.T.P.: Structural Control: Past, Present and Future. Journal of Engineering Mechanics 123(9) (September 1997)
Humar, J.L.: Dynamics of Structures. A. A. Balkema Publishers, Rotterdam (2001)
Korenberg, M., Billings, S.A., Liu, Y.P., McIlroy, P.J.: Orthogonal Parameter Estimation Algorithm for Non-Linear Stochastic Systems. International Journal of Control 48(1) (1988)
Kosmatopoulos, E.B., Smyth, A.W., Masri, S.F., Chassiakos, A.G.: Robust Adaptive Neural Estimation of Restoring Forces in Nonlinear Structures. Transactions of the ASME, Journal of Applied Mechanics 68 (November 2001)
Loh, C.H., Chung, S.T.: A Three-Stage Identification Approach for Hysteretic Systems. Earthquake Engineering and Structural Dynamics 22, 129–150 (1993)
Martinez-Garcia, J.C., Gomez-Gonzalez, B., Martinez-Guerra, R., Rivero-Angeles, F.J.: Parameter Identification of Civil Structures Using Partial Seismic Instrumentation. In: 5th Asian Control Conference, ASCC, Melbourne, Australia, July 20-23 (2004)
Masri, S.F., Miller, R.K., Saud, A.F., Caughey, T.K.: Identification of Nonlinear Vibrating Structures: Part I - Formulation. Transactions of the ASME, J. of Applied Mechanics 57 (December 1987)
Masri, S.F., Chassiakos, A.G., Caughey, T.K.: Structure-unknown non-linear dynamic systems: identification through neural networks. Smart Mater. Struct. 1, 45–56 (1992)
Masri, S.F., Chassiakos, A.G., Caughey, T.K.: Identification of nonlinear dynamic systems using neural networks. J. of Applied Mechanics 60, 123–133 (1993)
Mohammad, K.S., Worden, K., Tomlinson, G.R.: Direct Parameter Estimation for Linear and Non-linear Structures. Journal of Sound and Vibration 152(3) (1992)
Sugeno, M.: Industrial Applications of Fuzzy Control. Elsevier Science Pub. Co., Amsterdam (1985)
Wen, Y.K.: Method for Random Vibration of Hysteretic Systems. Journal of Engineering Mechanics, ASCE 102(2), 249–263 (1976)
Yar, M., Hammond, J.K.: Parameter Estimation for Hysteretic Systems. J. of Sound and Vibration 117(1) (1987)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rivero-Angeles, F.J., Gomez-Ramirez, E., Garrido, R. (2005). Nonlinear Civil Structures Identification Using a Polynomial Artificial Neural Network. In: Sanfeliu, A., Cortés, M.L. (eds) Progress in Pattern Recognition, Image Analysis and Applications. CIARP 2005. Lecture Notes in Computer Science, vol 3773. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11578079_15
Download citation
DOI: https://doi.org/10.1007/11578079_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29850-2
Online ISBN: 978-3-540-32242-9
eBook Packages: Computer ScienceComputer Science (R0)