Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Coined Quantum Walks Lift the Cospectrality of Graphs and Trees

  • Conference paper
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3757))

Abstract

In this paper we consider the problem of distinguishing graphs that are cospectral with respect to the standard adjacency and Laplacian matrix representations. Borrowing ideas from the field of quantum computing, we define a new matrix based on paths of the coined quantum walk. Quantum walks exhibit interference effects and their behaviour is markedly different to that of classical random walks. We show that the spectrum of this new matrix is able to distinguish many graphs which cannot be distinguished by standard spectral methods. We pay particular attention to strongly regular graphs; if a pair of strongly regular graphs share the same parameter set then there is no efficient algorithm that is proven to be able distinguish them. We have tested the method on large families of co-parametric strongly regular graphs and found it to be successful in every case. We have also tested the spectra’s performance when used to give a distance measure for inexact graph matching tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proc. 33th STOC, pp. 50–59. ACM, New York (2001)

    Google Scholar 

  2. Aldous, D., Fill, J.: Reversible markov chains and random walks on graphs (2005)

    Google Scholar 

  3. Ambainis, A.: Quantum walks and their algorithmic applications. International Journal of Quantum Information 1, 507–518 (2003)

    Article  MATH  Google Scholar 

  4. Ambainis, A.: Quantum walk algorithm for element distinctness. In: Proc. of 45th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2004 (2004)

    Google Scholar 

  5. Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional quantum walks. In: Proc. 33th STOC, pp. 60–69. ACM, New York (2001)

    Google Scholar 

  6. Braunstein, S.L.: Quantum teleportation without irreversible detection. Physical Review A, 1900–1903 (1996)

    Google Scholar 

  7. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems 30(1-7), 107–117 (1998)

    Article  Google Scholar 

  8. Cameron, P.J.: Topics in Algebraic Graph Theory. In: Chapter Strongly regular graphs, pp. 203–221. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  9. Childs, A., Farhi, E., Gutmann, S.: An example of the difference between quantum and classical random walks. Quantum Information Processing 1, 35 (2002)

    Article  MathSciNet  Google Scholar 

  10. Cirac, J., Zoller, P., Kimble, H.J., Mabuchi, H.: Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997)

    Article  Google Scholar 

  11. Gori, M., Maggini, M., Sarti, L.: Graph matching using random walks. In: IEEE 17th International Conference on Pattern Recognition (August 2004)

    Google Scholar 

  12. Grover, L.: A fast quantum mechanical algorithm for database search. In: Proc. 28th Annual ACM Symposium on the Theory of Computation, pp. 212–219. ACM Press, New York (1996)

    Google Scholar 

  13. Kempe, J.: Quantum random walks – an introductory overview. Contemporary Physics 44(4), 307–327 (2003)

    Article  MathSciNet  Google Scholar 

  14. Kempe, J.: Quantum random walks hit exponentially faster. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM 2003 and APPROX 2003. LNCS, vol. 2764, pp. 354–369. Springer, Heidelberg (2003)

    Google Scholar 

  15. Kwiat, P., Mitchell, J.R., Schwindt, P.D.D., White, A.G.

    Google Scholar 

  16. Lovász, L.: Random Walks on Graphs: A Survey. In: Paul Erdös is Eighty, vol. 2, pp. 353–398. János Bolyai Mathematical Society, Budapest (1996)

    Google Scholar 

  17. Merris, R.: Almost all trees are coimmanantal. Linear Algebra and its Applications 150, 61–66 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  18. Nayak, A., Vishwanath, A.: Quantum walk on a line, DIMACS Technical Report 2000-43 (2000)

    Google Scholar 

  19. Nielson, M.A., Chuang, I.L.: Quantum Computing and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  20. Robles-Kelly, A., Hancock, E.R.: Edit distance from graph spectra. In: Proc. of the IEEE International Conference on Computer Vision, pp. 234–241 (2003)

    Google Scholar 

  21. Robles-Kelly, A., Hancock, E.R.: String edit distance, random walks and graph matching. International Journal of Pattern Recognition and Artificial Intelligence 18(3), 315–327 (2004)

    Article  Google Scholar 

  22. Schwenk, A.J.: Almost all trees are cospectral. In: Harary, F. (ed.) New Directions in the Theory of Graphs, pp. 275–307. Academic Press, London (1973)

    Google Scholar 

  23. Severini, S.: On the digraph of a unitary matrix. SIAM Journal on Matrix Analysis and Applications 25(1), 295–300 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  24. Shenvi, N., Kempe, J., Whaley, K.B.: A quantum random walk search algorithm. Phys. Rev. A 67(5) (2003)

    Google Scholar 

  25. Sinclair, A.: Algorithms for random generation and counting: a Markov chain approach. Birkhauser, Boston (1993)

    MATH  Google Scholar 

  26. Spence, E.: Strongly Regular Graphs (2004), http://www.maths.gla.ac.uk/es/srgraphs.htm

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Emms, D., Severini, S., Wilson, R.C., Hancock, E.R. (2005). Coined Quantum Walks Lift the Cospectrality of Graphs and Trees. In: Rangarajan, A., Vemuri, B., Yuille, A.L. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2005. Lecture Notes in Computer Science, vol 3757. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11585978_22

Download citation

  • DOI: https://doi.org/10.1007/11585978_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30287-2

  • Online ISBN: 978-3-540-32098-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics