Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Framework for Relational Link Discovery

  • Conference paper
AI 2005: Advances in Artificial Intelligence (AI 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3809))

Included in the following conference series:

  • 1815 Accesses

Abstract

Link discovery is an emerging research direction for extracting evidences and links from multiple data sources. This paper proposes a self-organizing framework for discovering links from multi-relational databases. It includes main functional modules for developing adaptive data transformers and representation specification, multi-relational feature construction, and self-organizing multi-relational correlation and link discovery algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Senator, T.: DARPA: Evidence Extraction and Link Discovery Program. Speech at DARPATech (2002)

    Google Scholar 

  2. Getoor, L.: Link Mining: A New Data Mining Challenge. ACM SIGKDD Explorations Newsletter (2003)

    Google Scholar 

  3. Bharat, K., Chang, B., Henzinger, M.: Who Links to Whom: Mining Linkage between Web Sites. In: ICDM 2001 (2001)

    Google Scholar 

  4. Kovalerchuk, B.: Correlation of complex evidences and link discovery. In: The Fifth International Conference on Forensic Statistics (2002)

    Google Scholar 

  5. Adibi, J., Cohenand, P., Morrison, T.: Measuring Confidence Intervals in Link Discovery: A Bootstrap Approach. In: ACM SIGKDD (2004)

    Google Scholar 

  6. Lin, S., Chalupsky, H.: Using Unsupervised Link Discovery Methods to Find Interesting Facts and Connections in a Bibliography Dataset. In: SIGKDD Explorations (2003)

    Google Scholar 

  7. Pioch, N., et al.: Multi-Hypothesis Abductive Reasoning for Link Discovery. In: KDD 2004 (2004)

    Google Scholar 

  8. Yin, X., Han, J., Yang, J., Yu, P.S.: Efficient classification cross multiple database relations: a CrossMine approach. IEEE Transactions on Knowledge and data engineering

    Google Scholar 

  9. Mooney, R., Melville, P., Tang, L., Shavlik, J.: Relational data mining with inductive logic programming for link discovery. In: National Science Foundation Workshop on Next Generation Data (2002)

    Google Scholar 

  10. Mooney, R., et al.: Relational Data Mining with Inductive Logic Programming for Link Discovery. In: Kargupta, H., Joshi, A., Sivakumar, K., Yesha, Y. (eds.) Data Mining: Next Generation Challenges and Future Directions. AAAI Press, Menlo Park (2004)

    Google Scholar 

  11. Lavrac, N., Dzerosck, S.: Inductive logic programming: techniques and applications. Ellis Horwood (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Luo, D., Luo, C., Zhang, C. (2005). A Framework for Relational Link Discovery. In: Zhang, S., Jarvis, R. (eds) AI 2005: Advances in Artificial Intelligence. AI 2005. Lecture Notes in Computer Science(), vol 3809. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11589990_193

Download citation

  • DOI: https://doi.org/10.1007/11589990_193

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30462-3

  • Online ISBN: 978-3-540-31652-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics