Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3835))

Abstract

Recently, linear Logic has been used to specify sequent calculus proof systems in such a way that the proof search in linear logic can yield proof search in the specified logic. Furthermore, the meta-theory of linear logic can be used to draw conclusions about the specified sequent calculus. For example, derivability of one proof system from another can be decided by a simple procedure that is implemented via bounded logic programming-style search. Also, simple and decidable conditions on the linear logic presentation of inference rules, called homogeneous and coherence, can be used to infer that the initial rules can be restricted to atoms and that cuts can be eliminated. In the present paper we introduce Llinda, a logical framework based on linear logic augmented with inference rules for definition (fixed points) and induction. In this way, the above properties can be proved entirely inside the framework. To further illustrate the power of Llinda, we extend the definition of coherence and provide a new, semi-automated proof of cut-elimination for Girard’s Logic of Unicity (LU).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. Journal of Logic and Computation 2(3), 297–347 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Church, A.: A formulation of the simple theory of types. Journal of Symbolic Logic 5, 56–68 (1940)

    Article  MATH  MathSciNet  Google Scholar 

  3. Felty, A., Miller, D.: Specifying theorem provers in a higher-order logic programming language. In: Ninth International Conference on Automated Deduction (1988)

    Google Scholar 

  4. Gentzen, G.: Investigations into logical deductions. In: Szabo, M.E. (ed.) The Collected Papers of Gerhard Gentzen, pp. 68–131. North-Holland Publishing Co., Amsterdam (1969)

    Google Scholar 

  5. Girard, J.-Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  6. Girard, J.-Y.: On the unity of logic. Ann. of Pure and Applied Logic 59, 201–217 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. Girard, J.-Y.: On the meaning of logical rules I: syntax vs. semantics. In: Computational Logic, Berger and Schwichtenberg, pp. 215–272. SV (1999)

    Google Scholar 

  8. Guglielmi, A.: A system of Interaction and Structure. ACM Transactions in Computational Logic (2005) (to appear)

    Google Scholar 

  9. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. Journal of the ACM 40(1), 143–184 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  10. Miller, D.: Forum: A multiple-conclusion specification language. Theoretical Computer Science 165(1), 201–232 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. McDowell, R., Miller, D.: Cut-elimination for a logic with definitions and induction. Theoretical Computer Science 232, 91–119 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Miller, D., Nadathur, G., Pfenning, F., Scedrov, A.: Uniform proofs as a foundation for logic programming. Ann. of Pure and Applied Logic 51, 125–157 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  13. Miller, D., Pimentel, E.: Linear logic as a framework for specifying sequent calculus. In: Lecture Notes in Logic 17, Logic Colloquium 1999 (2004)

    Google Scholar 

  14. Miller, D., Pimentel, E.: Using linear logic to reason about sequent systems. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, p. 2. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Nadathur, G., Miller, D.: An Overview of λProlog. In: Fifth International Logic Programming Conference, pp. 810–827. MIT Press, Cambridge (August 1988)

    Google Scholar 

  16. Pfenning, F.: Elf: A Language for Logic Definition and Verified Metaprogramming. In: Fourth Annual Symposium on Logic in Computer Science (1989)

    Google Scholar 

  17. Pfenning, F.: Structural Cut Elimination. In: Proceedings, Tenth Annual IEEE Symposium on Logic in Computer Science (1995)

    Google Scholar 

  18. Pfenning, F.: Structural Cut Elimination: I. Intuitionistic and Classical Logic. Information and Computation 157(1-2), 84–141 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Pimentel, E.G.: Lógica linear e a especificação de sistemas computacionais. PhD thesis, Universidade Federal de Minas Gerais, Belo Horizonte, M.G., Brasil (written in English) (December 2001)

    Google Scholar 

  20. Pimentel, E.G.: Cut elimination for Llinda (2005), Draft, available from http://www.mat.ufmg.br/~elaine

  21. Tiu, A.: A Logical Framework for Reasoning about Logical Specifications. PhD thesis, Penn State University (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pimentel, E., Miller, D. (2005). On the Specification of Sequent Systems. In: Sutcliffe, G., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2005. Lecture Notes in Computer Science(), vol 3835. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11591191_25

Download citation

  • DOI: https://doi.org/10.1007/11591191_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30553-8

  • Online ISBN: 978-3-540-31650-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics