Abstract
When a radial-basis function neural network (RBFNN) is used for pattern classification, the problem involves designing the topology of RBFNN and also its centers and widths. In this paper, we present a particle swarm optimization (PSO) learning algorithm to automate the design of RBF networks, to solve pattern classification problems. Simulation results for benchmark problems in the pattern classification area show that the PSO-RBF outperforms two other learning algorithms in terms of network size and generalization performance.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Press, W.H., Teukolsky, S.A., Vetterling, W.T., Fkannery, B.P.: Numerical Recipes in C, 2nd edn. Cambrige University Press, Cambrige (1992)
Poggio, T., Girosi, F.: Network for Approximation and Learning. Proc. IEEE 78(9), 1481–1497 (1990)
Chen, S., Cowan, F.N., Grant, P.M.: Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks. IEEE Trans. Neural Networks 2(2), 302–309 (1991)
Broomhead, D., Lowe, D.: Multivariable Functional Interpolation and Adaptive Networks. Complex System 2, 321–355 (1988)
Moody, J., Darken, C.J.: Fast Learning in Networks of Locally-tuned Processing Units. Neural Computation 1, 281–294 (1989)
Billings, S.A., Zheng, G.L.: Radial Basis Function Network Configuration using Genetic Algorithms. Neural Networks, 877–890 (1995)
Mak, M.W., Cho, K.W.: Genetic Evolution of Radial Basis Function Centers for Pattern Classification. In: International Conference on Neural Networks, USA, pp. 669–673 (1998)
Miguelanez, E., Zalzala, A.M.S., Tabor, P.: Evolving Neural Networks using Swarm Intelligence for Binmap Classification. In: Proceedings of the 2004 IEEE Congress on Evolutionary Computation, pp. 978–985 (2004)
Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, Piscataway, NJ, pp. 1942–1948 (1995)
Blake, C., Merz, C.J.: UCI Repository of machine learning databases (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Qin, Z., Chen, J., Liu, Y., Lu, J. (2005). Evolving RBF Neural Networks for Pattern Classification. In: Hao, Y., et al. Computational Intelligence and Security. CIS 2005. Lecture Notes in Computer Science(), vol 3801. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11596448_142
Download citation
DOI: https://doi.org/10.1007/11596448_142
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-30818-8
Online ISBN: 978-3-540-31599-5
eBook Packages: Computer ScienceComputer Science (R0)