Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Optimal Broadcast Domination of Arbitrary Graphs in Polynomial Time

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3787))

Included in the following conference series:

  • 1126 Accesses

Abstract

Broadcast domination was introduced by Erwin in 2002, and it is a variant of the standard dominating set problem, such that vertices can be assigned various domination powers. Broadcast domination assigns a power f(v) ≥ 0 to each vertex v of a given graph, such that every vertex of the graph is within distance f(v) from some vertex v having f(v) ≥ 1. The optimal broadcast domination problem seeks to minimize the sum of the powers assigned to the vertices of the graph. Since the presentation of this problem its computational complexity has been open, and the general belief has been that it might be \(\mathcal{NP}\)-hard. In this paper, we show that optimal broadcast domination is actually in \(\mathcal{P}\), and we give a polynomial time algorithm for solving the problem on arbitrary graphs, using a non standard approach.

This work is supported by the Research Council of Norway through the SPECTRUM project grant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bar-Ilan, J., Kortsarz, G., Peleg, D.: How to allocate network centers. J. Algorithms 15, 385–415 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Berge, C.: Theory of Graphs and its Applications, Collection Universitaire de Mathematiques, vol. 2, Dunod, Paris (1958)

    Google Scholar 

  3. Blair, J.R.S., Heggernes, P., Horton, S., Manne, F.: Broadcast domination algorithms for interval graphs, series-parallel graphs, and trees. Congressus Numerantium 169, 55–77 (2004)

    MATH  MathSciNet  Google Scholar 

  4. Dunbar, J.E., Erwin, D.J., Haynes, T.W., Hedetniemi, S.M., Hedetniemi, S.T.: Broadcasts in graphs (2002) (Submitted)

    Google Scholar 

  5. Erwin, D.J.: Dominating broadcasts in graphs. Bull. Inst. Comb. Appl. 42, 89–105 (2004)

    MATH  MathSciNet  Google Scholar 

  6. Garey, M.R., Johnson, D.S.: Computers and Intractability. W. H. Freeman and Co., New York (1978)

    Google Scholar 

  7. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Domination in Graphs: Advanced Topics. Marcel Dekker, New York (1998)

    MATH  Google Scholar 

  8. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in Graphs. Marcel Dekker, New York (1998)

    MATH  Google Scholar 

  9. Henning, M.A.: Distance domination in graphs. In: Haynes, T.W., Hedetniemi, S.T., Slater, P.J. (eds.) Domination in Graphs: Advanced Topics, pp. 321–349. Marcel Dekker, New York (1998)

    Google Scholar 

  10. Horton, S.B., Meneses, C.N., Mukherjee, A., Ulucakli, M.E.: A computational study of the broadcast domination problem. Technical Report 2004-45, DIMACS Center for Discrete Mathematics and Theoretical Computer Science (2004)

    Google Scholar 

  11. Liu, C.L.: Introduction to Combinatorial Mathematics. McGraw-Hill, New York (1968)

    MATH  Google Scholar 

  12. Ore, O.: Theory of Graphs. American Mathematical Society Publications, vol. 38. AMS, Providence (1962)

    MATH  Google Scholar 

  13. Slater, P.J.: R-domination in graphs. J. Assoc. Comput. Mach. 23, 446–450 (1976)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Heggernes, P., Lokshtanov, D. (2005). Optimal Broadcast Domination of Arbitrary Graphs in Polynomial Time. In: Kratsch, D. (eds) Graph-Theoretic Concepts in Computer Science. WG 2005. Lecture Notes in Computer Science, vol 3787. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11604686_17

Download citation

  • DOI: https://doi.org/10.1007/11604686_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31000-6

  • Online ISBN: 978-3-540-31468-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics