Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Simulating Two-Dimensional Recognizability by Pushdown and Queue Automata

  • Conference paper
Implementation and Application of Automata (CIAA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3845))

Included in the following conference series:

Abstract

The aim of this paper is to investigate sequential models to describe two-dimensional languages. The intent is to add more capabilities to 4NFA in order to encompass a wider class of languages. We show that any (tiling) recognizable language can be simulated by a 4NFA with an extra queue whose size is bounded by the minimum of the two dimensions of a picture; and that 2NFA (i.e. automata moving only in two directions) with an analogous queue are sufficient when the alphabet is unary. A special class of recognizable languages can be simulated also by 4-way pushdown automata with a stack of size bounded by the sum of the two dimensions of the picture. Such a class is also characterized by a recursive definition involving the operations of union, intersection and a new diagonal overlapping operation applied to languages recognized by 2NFA.

Work partially supported by MIUR Cofin: Linguaggi Formali e Automi: Metodi, Modelli e Applicazioni.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anselmo, M., Giammarresi, D., Madonia, M.: Regular Expressions for Two-Dimensional Languages Over One-Letter Alphabet. In: Calude, C.S., Calude, E., Dinneen, M.J. (eds.) DLT 2004. LNCS, vol. 3340, pp. 63–75. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  2. Anselmo, M., Giammarresi, D., Madonia, M.: New operations and regular expressions for two-dimensional languages over one-letter alphabet. Theor. Comp. Sc. (to appear, 2005)

    Google Scholar 

  3. Blum, M., Hewitt, C.: Automata on a two-dimensional tape. In: IEEE Symposium on Switching and Automata Theory, pp. 155–160 (1967)

    Google Scholar 

  4. Crespi Reghizzi, S., Pradella, M.: Tile Rewriting Grammars. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 206–217. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Giammarresi, D., Restivo, A.: Two-dimensional finite state recognizability. Fundamenta Informaticae 25(3,4), 399–422 (1996)

    MathSciNet  MATH  Google Scholar 

  6. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., et al. (eds.) Handbook of Formal Languages, vol. III, pp. 215–268. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  7. Inoue, K., Nakamura, A.: Some properties of two-dimensional on-line tessellation acceptors. Information Sciences 13, 95–121 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Inoue, K., Takanami, I., Nakamura, A.: A note on two-dimensional finite automata. Information Processing Letters 7(1), 49–52 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  9. Inoue, K., Takanami, I., Taniguchi, H.: Two-dimensional alternating Turing machines. Theor. Comp. Sc. 27, 61–83 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ito, A., Inoue, K., Takanami, I.: Deterministic two-dimensional On-line tesselation Acceptors are equivalent to two-way two-dimensional alternating finite automata through 180°-rotation. Theor. Comp. Sc. 66, 273–287 (1989)

    Article  MATH  Google Scholar 

  11. Kari, J., Moore, C.: New results on alternating and non-deterministic two-dimensional finite-state automata. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  12. Kinber, E.B.: Three-way Automata on Rectangular Tapes over a One-Letter Alphabet. In: Information Sciences, vol. 35, pp. 61–77. Elsevier Sc. Publ., Amsterdam (1985)

    Google Scholar 

  13. Lindgren, K., Moore, C., Nordhal, M.G.: Complexity by two-dimensional patterns. J. of Statistical Physics 91, 909–951 (1998)

    Article  MATH  Google Scholar 

  14. Matz, O.: Regular expressions and Context-free Grammars for picture languages. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 283–294. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  15. Okazaki, T., Ito, A., Inoue, K., Wang, Y.: Closure property of space-bounded two-dimensional alternating Turing machines, pushdown automata, and counter automata. Int. J. of Pattern Rec. and Artif. Intelligence 15(7), 1143–1165 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Anselmo, M., Madonia, M. (2006). Simulating Two-Dimensional Recognizability by Pushdown and Queue Automata . In: Farré, J., Litovsky, I., Schmitz, S. (eds) Implementation and Application of Automata. CIAA 2005. Lecture Notes in Computer Science, vol 3845. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11605157_4

Download citation

  • DOI: https://doi.org/10.1007/11605157_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31023-5

  • Online ISBN: 978-3-540-33097-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics