Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Optimal Memory Rendezvous of Anonymous Mobile Agents in a Unidirectional Ring

  • Conference paper
SOFSEM 2006: Theory and Practice of Computer Science (SOFSEM 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3831))

Abstract

We study the rendezvous problem with k≥2 mobile agents in a n-node ring. We present a new algorithm which solves the rendezvous problem for any non-periodic distribution of agents on the ring. The mobile agents require the use of O(log k)–bit-wise size of internal memory and one indistinguishable token each. In the periodic (but not symmetric) case our new procedure allows the agents to conclude that rendezvous is not feasible. It is known that in the symmetric case the agents cannot decide the feasibility of rendezvous if their internal memory is limited to ω(loglog n) bits, see [15]. In this context we show new space optimal deterministic algorithm allowing effective recognition of the symmetric case. The algorithm is based on O(log k + loglog n)-bit internal memory and a single token provided to each mobile agent. Finally, it is known that both in the periodic as well as in the symmetric cases the rendezvous cannot be accomplished by any deterministic procedure due to problems with breaking symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alpern, S.: Asymmetric Rendezvous on the Circle. Dynamics and Control 10, 33–45 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alpern, S.: Rendezvous Search: A Personal Perspective. LSE Research Report, CDAM-2000-05, London School of Economics (2000)

    Google Scholar 

  3. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. Kluwer Academic Publishers, Dordrecht (2003)

    MATH  Google Scholar 

  4. Alpern, S., Howard, J.V.: Alternating Search at Two Locations. LSE OR Working Paper, 99.30 (1999)

    Google Scholar 

  5. Alpern, S., Reyniers, D.: The Rendezvous and Coordinated Search Problems. Proceedings of the 33rd Conference on Decision and Control, Lake Buena Vista, FL (December 1994)

    Google Scholar 

  6. Anderson, E.J., Essegaier, S.: Rendezvous Search on the Line with Indistinguishable Players. SIAM J. of Control and Opt. 33, 1637–1642 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Anderson, E.J., Fekete, S.: Two-Dimensional Rendezvous Search. Operations Research 49, 107–188 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Anderson, E.J., Weber, R.R.: The Rendezvous Problem on Discrete Locations. Journal of Applied Probability 28, 839–851 (1990)

    Article  MathSciNet  Google Scholar 

  9. Apostol, T.M.: Introduction to Analytical Number Theory. Springer, Heidelberg (1997)

    Google Scholar 

  10. Baston, V., Gal, S.: Rendezvous on the Line When the Players’ Initial Distance is Given by an Unknown Probability Distribution. SIAM Journal of Control and Optimization 36(6), 1880–1889 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Baston, V., Gal, S.: Rendezvous Search When Marks are Left at the Starting Points. Naval Research Logistics 47(6), 722–731 (2001)

    Article  MathSciNet  Google Scholar 

  12. Chester, E., Tutuncu, R.: Rendezvous Search on the Labeled Line, Old title: Rendezvous Search on Finite Domains, Preprint, Department of Mathematical Sciences, Carnegie Mellon University (2001)

    Google Scholar 

  13. Flocchini, P., Mans, B., Santoro, N.: Sense of Direction in Distributed Computing. Theoretical Computer Science 291(1), 29–53 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Flocchini, P., Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: The Rendezvous Search Problem with More Than Two Mobile Agents. Preprint (2002)

    Google Scholar 

  15. Flocchini, P., Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Multiple Mobile Agent Rendezvous in a Ring. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 599–608. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  16. Frederickson, G.N., Lynch, N.A.: Electing a Leader in a Synchronous Ring. Journal of the ACM 1(34), 98–115 (1987)

    Article  MathSciNet  Google Scholar 

  17. Lim, W.S., Beck, A., Alpern, S.: Rendezvous Search on the Line with More Than Two Players. Operations Research 45, 357–364 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Pikounis, M., Thomas, L.C.: Many Player Rendezvous Search: Stick Together or Split and Meet? Working Paper 98/7, University of Edinburgh, Management School (1998)

    Google Scholar 

  19. Sawchuk, C.: Mobile Agent Rendezvous in the Ring. PhD Thesis, Carleton University (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gąsieniec, L., Kranakis, E., Krizanc, D., Zhang, X. (2006). Optimal Memory Rendezvous of Anonymous Mobile Agents in a Unidirectional Ring. In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds) SOFSEM 2006: Theory and Practice of Computer Science. SOFSEM 2006. Lecture Notes in Computer Science, vol 3831. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11611257_26

Download citation

  • DOI: https://doi.org/10.1007/11611257_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31198-0

  • Online ISBN: 978-3-540-32217-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics