Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On the NP-Completeness of Some Graph Cluster Measures

  • Conference paper
SOFSEM 2006: Theory and Practice of Computer Science (SOFSEM 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3831))

  • 1044 Accesses

Abstract

Graph clustering is the problem of identifying sparsely connected dense subgraphs (clusters) in a given graph. Identifying clusters can be achieved by optimizing a fitness function that measures the quality of a cluster within the graph. Examples of such cluster measures include the conductance, the local and relative densities, and single cluster editing. We prove that the decision problems associated with the optimization tasks of finding clusters that are optimal with respect to these fitness measures are NP-complete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alimonti, P., Kann, V.: Some APX-Completeness Results for Cubic Graphs. Theoretical Computer Science 237(1-2), 123–134 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arora, S., Rao, S., Vazirani, U.: Expander Flows, Geometric Embeddings and Graph Partitioning. In: Proceedings of the STOC 2004 Thirty-Sixth Annual ACM Symposium on Theory of Computing, pp. 222–231. ACM Press, New York (2004)

    Chapter  Google Scholar 

  3. Bansal, N., Blum, A., Chawla, S.: Correlation Clustering. Machine Learning 56(1-3), 89–113 (2004)

    Article  MATH  Google Scholar 

  4. Brandes, U., Gaertler, M., Wagner, D.: Experiments on Graph Clustering Algorithms. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 568–579. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Broder, A., Kumar, S.R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins, A., Wiener, J.: Graph Structure in the Web. Computer Networks 33(1-6), 309–320 (2000)

    Article  Google Scholar 

  6. Bui, T.N., Chaudhuri, S., Leighton, F.T., Sipser, M.: Graph Bisection Algorithms with Good Average Case Behavior. Combinatorica 7(2), 171–191 (1987)

    Article  MathSciNet  Google Scholar 

  7. Carrasco, J.J., Fain, D.C., Lang, K.J., Zhukov, L.: Clustering of Bipartite Advertiser-Keyword Graph. In: The ICDM 2003 Third IEEE International Conference on Data Mining, Workshop on Clustering Large Data Sets, Melbourne, Florida (2003)

    Google Scholar 

  8. Cheng, D., Kannan, R., Vempala, S., Wang, G.: A Divide-and-Merge Methodology for Clustering. In: Proceedings of the PODS 2005 Twenty-Fourth ACM Symposium on Principles of Database Systems, Baltimore (June 2005)

    Google Scholar 

  9. Flake, G.W., Tsioutsiouliklis, K., Tarjan, R.E.: Graph Clustering Techniques Based on Minimum-Cut Trees. Technical report 2002-06, NEC, Princeton, NJ (2002)

    Google Scholar 

  10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-completeness. W. H. Freeman & Co., San Francisco (1979)

    MATH  Google Scholar 

  11. Gkantsidis, C., Mihail, M., Saberi, A.: Conductance and Congestion in Power Law Graphs. In: Proceedings of the SIGMETRICS 2003 ACM International Conference on Measurement and Modeling of Computer Systems, pp. 148–159. ACM Press, New York (2003)

    Chapter  Google Scholar 

  12. Holzapfel, K., Kosub, S., Maaß, M.G., Täubig, H.: The Complexity of Detecting Fixed-Density Clusters. In: Petreschi, R., Persiano, G., Silvestri, R. (eds.) CIAC 2003. LNCS, vol. 2653, pp. 201–212. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Jain, A.K., Murty, M.N., Flynn, P.J.: Data Clustering: A Review. ACM Computing Surveys 31(3), 264–323 (1999)

    Article  Google Scholar 

  14. Kaibel, V.: On the Expansion of Graphs of 0/1-Polytopes. Technical report arXiv:math.CO/0112146 (2001)

    Google Scholar 

  15. Kannan, R., Vempala, S., Vetta, A.: On Clusterings: Good, Bad and Spectral. In: Proceedings of the FOCS 2000 Forty-First Annual Symposium on the Foundation of Computer Science, pp. 367–377. IEEE Computer Society Press, New York (2000)

    Google Scholar 

  16. Karp, R.M.: Reducibility among Combinatorial Problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)

    Google Scholar 

  17. Leighton, T., Rao, S.: Multicommodity Max-Flow Min-Cut Theorems and Their Use in Designing Approximation Algorithms. Journal of the ACM 46(6), 787–832 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lovász, L.: Random Walks on Graphs: A Survey. Bolyai Society Mathematical Studies, 2, Combinatorics, Paul Erdös is Eighty, Budapest: Bolyai Mathematical Society 2, 353–397 (1996)

    Google Scholar 

  19. Mihail, M., Gkantsidis, C., Saberi, A., Zegura, E.: On the Semantics of Internet Topologies. Technical Report GIT-CC-02-07, College of Computing, Georgia Institute of Technology, Atlanta, GA (2002)

    Google Scholar 

  20. Schaeffer, S.E.: Stochastic Local Clustering for Massive Graphs. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 354–360. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  21. Shamir, R., Sharan, R., Tsur, D.: Cluster Graph Modification Problems. In: Kučera, L. (ed.) WG 2002. LNCS, vol. 2573, pp. 379–390. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  22. Shi, J., Malik, J.: Normalized Cuts and Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)

    Article  Google Scholar 

  23. Virtanen, S.E.: Properties of Nonuniform Random Graph Models. Technical Report HUT-TCS-A77, Laboratory for Theoretical Computer Science, Helsinki University of Technology, Espoo, Finland (2003)

    Google Scholar 

  24. Yannakakis, M.: Node- and Edge-Deletion NP-Complete Problems. In: Proceedings of the STOC 1978 Tenth Annual ACM Symposium on Theory of Computing, pp. 253–264. ACM Press, New York (1978)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Šíma, J., Schaeffer, S.E. (2006). On the NP-Completeness of Some Graph Cluster Measures. In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds) SOFSEM 2006: Theory and Practice of Computer Science. SOFSEM 2006. Lecture Notes in Computer Science, vol 3831. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11611257_51

Download citation

  • DOI: https://doi.org/10.1007/11611257_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31198-0

  • Online ISBN: 978-3-540-32217-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics