Abstract
Graph clustering is the problem of identifying sparsely connected dense subgraphs (clusters) in a given graph. Identifying clusters can be achieved by optimizing a fitness function that measures the quality of a cluster within the graph. Examples of such cluster measures include the conductance, the local and relative densities, and single cluster editing. We prove that the decision problems associated with the optimization tasks of finding clusters that are optimal with respect to these fitness measures are NP-complete.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alimonti, P., Kann, V.: Some APX-Completeness Results for Cubic Graphs. Theoretical Computer Science 237(1-2), 123–134 (2000)
Arora, S., Rao, S., Vazirani, U.: Expander Flows, Geometric Embeddings and Graph Partitioning. In: Proceedings of the STOC 2004 Thirty-Sixth Annual ACM Symposium on Theory of Computing, pp. 222–231. ACM Press, New York (2004)
Bansal, N., Blum, A., Chawla, S.: Correlation Clustering. Machine Learning 56(1-3), 89–113 (2004)
Brandes, U., Gaertler, M., Wagner, D.: Experiments on Graph Clustering Algorithms. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 568–579. Springer, Heidelberg (2003)
Broder, A., Kumar, S.R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins, A., Wiener, J.: Graph Structure in the Web. Computer Networks 33(1-6), 309–320 (2000)
Bui, T.N., Chaudhuri, S., Leighton, F.T., Sipser, M.: Graph Bisection Algorithms with Good Average Case Behavior. Combinatorica 7(2), 171–191 (1987)
Carrasco, J.J., Fain, D.C., Lang, K.J., Zhukov, L.: Clustering of Bipartite Advertiser-Keyword Graph. In: The ICDM 2003 Third IEEE International Conference on Data Mining, Workshop on Clustering Large Data Sets, Melbourne, Florida (2003)
Cheng, D., Kannan, R., Vempala, S., Wang, G.: A Divide-and-Merge Methodology for Clustering. In: Proceedings of the PODS 2005 Twenty-Fourth ACM Symposium on Principles of Database Systems, Baltimore (June 2005)
Flake, G.W., Tsioutsiouliklis, K., Tarjan, R.E.: Graph Clustering Techniques Based on Minimum-Cut Trees. Technical report 2002-06, NEC, Princeton, NJ (2002)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-completeness. W. H. Freeman & Co., San Francisco (1979)
Gkantsidis, C., Mihail, M., Saberi, A.: Conductance and Congestion in Power Law Graphs. In: Proceedings of the SIGMETRICS 2003 ACM International Conference on Measurement and Modeling of Computer Systems, pp. 148–159. ACM Press, New York (2003)
Holzapfel, K., Kosub, S., Maaß, M.G., Täubig, H.: The Complexity of Detecting Fixed-Density Clusters. In: Petreschi, R., Persiano, G., Silvestri, R. (eds.) CIAC 2003. LNCS, vol. 2653, pp. 201–212. Springer, Heidelberg (2003)
Jain, A.K., Murty, M.N., Flynn, P.J.: Data Clustering: A Review. ACM Computing Surveys 31(3), 264–323 (1999)
Kaibel, V.: On the Expansion of Graphs of 0/1-Polytopes. Technical report arXiv:math.CO/0112146 (2001)
Kannan, R., Vempala, S., Vetta, A.: On Clusterings: Good, Bad and Spectral. In: Proceedings of the FOCS 2000 Forty-First Annual Symposium on the Foundation of Computer Science, pp. 367–377. IEEE Computer Society Press, New York (2000)
Karp, R.M.: Reducibility among Combinatorial Problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)
Leighton, T., Rao, S.: Multicommodity Max-Flow Min-Cut Theorems and Their Use in Designing Approximation Algorithms. Journal of the ACM 46(6), 787–832 (1999)
Lovász, L.: Random Walks on Graphs: A Survey. Bolyai Society Mathematical Studies, 2, Combinatorics, Paul Erdös is Eighty, Budapest: Bolyai Mathematical Society 2, 353–397 (1996)
Mihail, M., Gkantsidis, C., Saberi, A., Zegura, E.: On the Semantics of Internet Topologies. Technical Report GIT-CC-02-07, College of Computing, Georgia Institute of Technology, Atlanta, GA (2002)
Schaeffer, S.E.: Stochastic Local Clustering for Massive Graphs. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 354–360. Springer, Heidelberg (2005)
Shamir, R., Sharan, R., Tsur, D.: Cluster Graph Modification Problems. In: Kučera, L. (ed.) WG 2002. LNCS, vol. 2573, pp. 379–390. Springer, Heidelberg (2002)
Shi, J., Malik, J.: Normalized Cuts and Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)
Virtanen, S.E.: Properties of Nonuniform Random Graph Models. Technical Report HUT-TCS-A77, Laboratory for Theoretical Computer Science, Helsinki University of Technology, Espoo, Finland (2003)
Yannakakis, M.: Node- and Edge-Deletion NP-Complete Problems. In: Proceedings of the STOC 1978 Tenth Annual ACM Symposium on Theory of Computing, pp. 253–264. ACM Press, New York (1978)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Šíma, J., Schaeffer, S.E. (2006). On the NP-Completeness of Some Graph Cluster Measures. In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds) SOFSEM 2006: Theory and Practice of Computer Science. SOFSEM 2006. Lecture Notes in Computer Science, vol 3831. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11611257_51
Download citation
DOI: https://doi.org/10.1007/11611257_51
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-31198-0
Online ISBN: 978-3-540-32217-7
eBook Packages: Computer ScienceComputer Science (R0)