Abstract
The crossing number of a graph is the minimum number of edge intersections in a plane drawing of a graph, where each intersection is counted separately. If instead we count the number of pairs of edges that intersect an odd number of times, we obtain the odd crossing number. We show that there is a graph for which these two concepts differ, answering a well-known open question on crossing numbers. To derive the result we study drawings of maps (graphs with rotation systems).
Chapter PDF
Similar content being viewed by others
References
Archdeacon, D.: Problems in topological graph theory, http://www.emba.uvm.edu/~archdeac/problems/altcross.html (accessed April 7, 2005)
Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM Journal on Algebraic and Discrete Methods 4(3), 312–316 (1983)
Gross, J.L., Tucker, T.W.: Topological graph theory, p. 361. Dover Publications Inc., Mineola (2001); Reprint of the 1987 original
Chojnacki, C. (Haim Hanani): Uber wesentlich unplättbare Kurven im drei-dimensionalen Raume. Fundamenta Mathematicae 23, 135–142 (1934)
Kolman, P., Matoušek, J.: Crossing number, pair-crossing number, and expansion. J. Combin. Theory Ser. B 92(1), 99–113 (2004)
Pach, J.: Crossing numbers. In: Akiyama, J., Kano, M., Urabe, M. (eds.) JCDCG 1998. LNCS, vol. 1763, pp. 267–273. Springer, Heidelberg (2000)
Pach, J., Tóth, G.: Which crossing number is it anyway? J. Combin. Theory Ser. B 80(2), 225–246 (2000)
Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Removing even crossings (April 2005) (manuscript)
Székely, L.A.: A successful concept for measuring non-planarity of graphs: the crossing number. Discrete Math. 276(1-3), 331–352 (2004); 6th International Conference on Graph Theory
Tutte, W.T.: Toward a theory of crossing numbers. J. Combinatorial Theory 8, 45–53 (1970)
Pavel Valtr. On the pair-crossing number (manuscript)
West, D.: Open problems - graph theory and combinatorics., http://www.math.uiuc.edu/~west/openp/ (accessed April 7, 2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pelsmajer, M.J., Schaefer, M., Štefankovič, D. (2006). Odd Crossing Number Is Not Crossing Number. In: Healy, P., Nikolov, N.S. (eds) Graph Drawing. GD 2005. Lecture Notes in Computer Science, vol 3843. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11618058_35
Download citation
DOI: https://doi.org/10.1007/11618058_35
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-31425-7
Online ISBN: 978-3-540-31667-1
eBook Packages: Computer ScienceComputer Science (R0)