Abstract
In this paper some effective methods for calculating the exact degrees of possible and necessary optimality of an element in matroids with ill-known weights modeled by fuzzy intervals are presented.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dubois, D., Prade, H.: Possibility theory: an approach to computerized processing of uncertainty. Plenum Press, New York (1988)
Dubois, D., Fargier, H., Fortin, J.: A generalized vertex method for computing with fuzzy intervals. Fuzz IEEE, 541–546 (2004)
Kasperski, A., Zieliński, P.: On combinatorial optimization problems on matroids with ill-known weights. Instytut Matematyki PWr., Wroclaw, raport serii PREPRINTY nr 34, submitted for publication in Eur. J. Oper. Res (2005)
Oxley, J.G.: Matroid Theory. Oxford University Press, New York (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fortin, J., Kasperski, A., Zieliński, P. (2006). Efficient Methods for Computing Optimality Degrees of Elements in Fuzzy Weighted Matroids. In: Bloch, I., Petrosino, A., Tettamanzi, A.G.B. (eds) Fuzzy Logic and Applications. WILF 2005. Lecture Notes in Computer Science(), vol 3849. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11676935_12
Download citation
DOI: https://doi.org/10.1007/11676935_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-32529-1
Online ISBN: 978-3-540-32530-7
eBook Packages: Computer ScienceComputer Science (R0)