Abstract
In this paper, we address the convolutive blind source separation (BSS) problem with a sparse independent component analysis (ICA) method, which uses ICA to find a set of basis vectors from the observed data, followed by clustering to identify the original sources. We show that, thanks to the temporally localised basis vectors that result, phase information is easily exploited to determine the clusters, using an unsupervised clustering method. Experimental results show that good performance is obtained with the proposed approach, even for short basis vectors.
This work was funded by EPSRC grants GR/S85900/01, GR/R54620/01, and GR/S82213/01.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cardoso, J.F.: Blind signal separation: statistical principles. Proceedings of the IEEE 86, 2009–2025 (1998)
Sawada, H., Mukai, R., Araki, S., Makino, S.: A robust and precise method for solving the permutation problem of frequency-domain blind source separation. IEEE Trans. on Speech and Audio Processing 12, 530–538 (2004)
Mitianoudis, N., Davies, M.: Permutation alignment for frequency domain ICA using subspace beamforming methods. In: Puntonet, C.G., Prieto, A.G. (eds.) ICA 2004. LNCS, vol. 3195, pp. 669–676. Springer, Heidelberg (2004)
Saruwatari, H., Kurita, S., Takeda, K.: Blind source separation combining frequency-domain ICA and beamforming. In: Proc. ICASSP, vol. 5, pp. 2733–2736 (2001)
Ikram, M., Morgan, D.: A beamforming approach to permutation alignment for multichannel frequency-domain blind speech separation. In: Proc. ICASSP, vol. 1, pp. 881–884 (2002)
Lee, J.-H., Lee, T.-W., Jung, H.-Y., Lee, S.-Y.: On the efficient speech feature extraction based on independent component analysis. Neural Processing Letters 15, 235–245 (2002)
Adballah, S., Plumbley, M.: Application of geometric dependency analysis to the separation of convolved mixtures. In: Puntonet, C.G., Prieto, A.G. (eds.) ICA 2004. LNCS, vol. 3195, pp. 22–24. Springer, Heidelberg (2004)
Cardoso, J.F., Laheld, B.: Equivariant adaptive source separation. IEEE Trans. Signal Processing 44, 3017–3030 (1996)
Knapp, C., Carter, G.: The generalized correlation method for estimation of time delay. IEEE Trans. Acoustic, Speech, and Signal Processing 24, 320–327 (1976)
Mitianoudis, N., Davies, M.: Audio source separation of convolutive mixtures. IEEE Trans. on Audio and Speech Processing 11, 489–497 (2003)
Févotte, C., Gribonval, R., Vincent, E.: BSS EVAL Toolbox User Guide. IRISA Technical Report 1706 (April 2005), http://www.irisa.fr/metiss/bss_eval/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jafari, M.G., Abdallah, S.A., Plumbley, M.D., Davies, M.E. (2006). Sparse Coding for Convolutive Blind Audio Source Separation. In: Rosca, J., Erdogmus, D., PrÃncipe, J.C., Haykin, S. (eds) Independent Component Analysis and Blind Signal Separation. ICA 2006. Lecture Notes in Computer Science, vol 3889. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11679363_17
Download citation
DOI: https://doi.org/10.1007/11679363_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-32630-4
Online ISBN: 978-3-540-32631-1
eBook Packages: Computer ScienceComputer Science (R0)