Abstract
In this article, we consider high-dimensional data which contains a low-dimensional non-Gaussian structure contaminated with Gaussian noise and propose a new method to identify the non-Gaussian subspace. A linear dimension reduction algorithm based on the fourth-order cumulant tensor was proposed in our previous work [4]. Although it works well for sub-Gaussian structures, the performance is not satisfactory for super-Gaussian data due to outliers. To overcome this problem, we construct an alternative by using Hessian of characteristic functions which was applied to (multidimensional) independent component analysis [10,11]. A numerical study demonstrates the validity of our method.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Blanchard, G., Kawanabe, M., Sugiyama, M., Spokoiny, V., Müller, K.-R.: In search of non-Gaussian components of a high-dimensional distribution. Journal of Machine Learning Research (submitted)
Cardoso, J.-F., Souloumiac, A.: Blind beamforming for non Gaussian signals. IEE Proceedings-F 140(6), 362–370 (1993)
Friedman, J.H., Tukey, J.W.: A projection pursuit algorithm for exploratory data analysis. IEEE Transactions on Computers 23(9), 881–890 (1975)
Kawanabe, M.: Linear dimension reduction based on the fourth-order cumulant tensor. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 151–156. Springer, Heidelberg (2005)
Huber, P.J.: Projection pursuit. The Annals of Statistics 13, 435–475 (1985)
Hyvärinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks 10(3), 626–634 (1999)
Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley, Chichester (2001)
Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)
Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)
Theis, F.J.: A new concept for separability problems in blind source separation. Neural Computation 16, 1827–1850 (2004)
Theis, F.J.: Multidimensional independent component analysis using characte ristic functions. In: Proc. EUSIPCO 2005, Antalya, Turkey (2005)
Theis, F.J., Kawanabe, M.: Uniqueness of non-Gaussian component analysis. In: ICA 2006 (2006) (submitted)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kawanabe, M., Theis, F.J. (2006). Estimating Non-Gaussian Subspaces by Characteristic Functions. In: Rosca, J., Erdogmus, D., PrÃncipe, J.C., Haykin, S. (eds) Independent Component Analysis and Blind Signal Separation. ICA 2006. Lecture Notes in Computer Science, vol 3889. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11679363_20
Download citation
DOI: https://doi.org/10.1007/11679363_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-32630-4
Online ISBN: 978-3-540-32631-1
eBook Packages: Computer ScienceComputer Science (R0)