Abstract
We consider preprocessing a set S of n points in the plane that are in convex position into a data structure supporting queries of the following form: given a point q and a directed line ℓ in the plane, report the point of S that is farthest from (or, alternatively, nearest to) the point q subject to being to the left of line ℓ. We present two data structures for this problem. The first data structure uses O(n 1 + ε) space and preprocessing time, and answers queries in O(21/ε log n) time. The second data structure uses O(n log3 n) space and polynomial preprocessing time, and answers queries in O(log n) time. These are the first solutions to the problem with O(log n) query time and o(n 2) space.
In the process of developing the second data structure, we develop a new representation of nearest-point and farthest-point Voronoi diagrams of points in convex position. This representation supports insertion of new points in counterclockwise order using only O(log n) amortized pointer changes, subject to supporting O(log n)-time point-location queries, even though every such update may make Θ(n) combinatorial changes to the Voronoi diagram. This data structure is the first demonstration that deterministically and incrementally constructed Voronoi diagrams can be maintained in o(n) pointer changes per operation while keeping O(log n)-time point-location queries.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aggarwal, A., Guibas, L.J., Saxe, J.B., Shor, P.W.: A linear-time algorithm for computing the Voronoi diagram of a convex polygon. Discrete Comput. Geom. 4(6), 591–604 (1989)
Aronov, B., Bose, P., Demaine, E.D., Gudmundsson, J., Iacono, J., Langerman, S., Smid, M.: Data structures for halfplane proximity queries and incremental voronoi diagrams, arXiv:cs.CG/0512093, http://arXiv.org/abs/cs.CG/0512093
Calling, T.: The adventures of Flarb Demingo! (2005), http://www.thecalling.co.za/flarb_pictures.htm , See also the fan site, http://www2.fanscape.com/thecalling/streetteam/flarb.html
Chan, T.M.: A dynamic data structure for 3-d convex hulls and 2-d nearest neighbor queries. In: Proc. 17th ACM-SIAM Sympos. Discrete Algorithms (2006)
Chiang, Y.-J., Tamassia, R.: Dynamic algorithms in computational geometry. Proc. IEEE 80(9), 1412–1434 (1992)
Cromley, R.G.: Digital Cartography. Prentice-Hall, Englewood Cliffs (August 1991)
Daescu, O., Mi, N., Shin, C.-S., Wolff, A.: Farthest-point queries with geometric and combinatorial constraints. Computat. Geom. Theory Appl. (2006) (to appear)
de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computat. Geom. Theory Appl., 2nd edn. Springer, Heidelberg (1999)
Dent, B.D.: Cartography: Thematic Map Design, 5th edn. William C. Brown Pub. (July 1998)
Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making data structures persistent. Journal of Computer and System Sciences 38(1), 86–124 (1989)
Edelsbrunner, H., Guibas, L., Stolfi, J.: Optimal point location in a monotone subdivision. SIAM Journal on Computing 15(2), 317–340 (1986)
Eppstein, D.: The farthest point Delaunay triangulation minimizes angles. Computat. Geom. Theory Appl. 1(3), 143–148 (1992)
McMaster, R.B., Shea, K.S.: Generalization in Digital Cartography. Association of American Cartographers, Washington D.C. (1992)
Overmars, M.H.: The Design of Dynamic Data Structures. LNCS, vol. 156. Springer, Heidelberg (1983)
Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer, Heidelberg (1993)
Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. Journal of Computer and System Sciences 26(3), 362–391 (1983)
Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. Journal of the ACM 32(3), 652–686 (1985)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Aronov, B. et al. (2006). Data Structures for Halfplane Proximity Queries and Incremental Voronoi Diagrams. In: Correa, J.R., Hevia, A., Kiwi, M. (eds) LATIN 2006: Theoretical Informatics. LATIN 2006. Lecture Notes in Computer Science, vol 3887. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11682462_12
Download citation
DOI: https://doi.org/10.1007/11682462_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-32755-4
Online ISBN: 978-3-540-32756-1
eBook Packages: Computer ScienceComputer Science (R0)