Abstract
Metric Temporal Logic (MTL) is a widely-studied real-time extension of Linear Temporal Logic. In this paper we consider a fragment of MTL, called Safety MTL, capable of expressing properties such as invariance and time-bounded response. Our main result is that the satisfiability problem for Safety MTL is decidable. This is the first positive decidability result for MTL over timed ω-words that does not involve restricting the precision of the timing constraints, or the granularity of the semantics; the proof heavily uses the techniques of infinite-state verification. Combining this result with some of our previous work, we conclude that Safety MTL is fully decidable in that its satisfiability, model checking, and refinement problems are all decidable.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Abdulla, P.A., Deneux, J., Ouaknine, J., Worrell, J.B.: Decidability and complexity results for timed automata via channel machines. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1089–1101. Springer, Heidelberg (2005)
Abdulla, P.A., Jonsson, B.: Undecidable verification problems with unreliable channels. Information and Computation 130, 71–90 (1996)
Abdulla, P.A., Jonsson, B.: Model checking of systems with many identical timed processes. Theoretical Computer Science 290(1), 241–264 (2003)
Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126, 183–235 (1994)
Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. Journal of the ACM 43, 116–146 (1996)
Alur, R., Henzinger, T.A.: Real-time logics: complexity and expressiveness. Information and Computation 104, 35–77 (1993)
Alur, R., Henzinger, T.A.: A really temporal logic. Journal of the ACM 41, 181–204 (1994)
Bouyer, P., Chevalier, F., Markey, N.: On the expressiveness of TPTL and MTL. Research report LSV-2005-05, Lab. Spécification et Vérification (May 2005)
Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theoretical Computer Science 256(1-2), 63–92 (2001)
Henzinger, T.A.: It’s about time: Real-time logics reviewed. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 439–454. Springer, Heidelberg (1998)
Henzinger, T.A., Manna, Z., Pnueli, A.: What good are digital clocks? In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623. Springer, Heidelberg (1992)
Henzinger, T.A., Raskin, J.-F., Schobbens, P.-Y.: The regular real-time languages. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, p. 580. Springer, Heidelberg (1998)
Higman, G.: Ordering by divisibility in abstract algebras. Proceedings of the London Mathematical Society 2, 236–366 (1952)
Koymans, R.: Specifying real-time properties with metric temporal logic. Real-time Systems 2(4), 255–299 (1990)
Lasota, S., Walukiewicz, I.: Alternating timed automata. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 250–265. Springer, Heidelberg (2005)
Ouaknine, J., Worrell, J.: On the decidability of Metric Temporal Logic. In: Proceedings of LICS 2005. IEEE Computer Society Press, Los Alamitos (2005)
Ouaknine, J., Worrell, J.: Metric temporal logic and faulty Turing machines. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, p. 447. Springer, Heidelberg (2006)
Ouaknine, J., Worrell, J.: Safety MTL is fully decidable. Oxford University Programming Research Group Research Report RR-06-02
Raskin, J.-F., Schobbens, P.-Y.: State-clock logic: a decidable real-time logic. In: Maler, O. (ed.) HART 1997. LNCS, vol. 1201, p. 417. Springer, Heidelberg (1997)
Vardi, M.: Alternating automata: Unifying truth and validity checking for temporal logics. In: McCune, W. (ed.) CADE 1997. LNCS, vol. 1249. Springer, Heidelberg (1997)
Wang, F.: Formal Verification of Timed Systems: A Survey and Perspective. Proceedings of the IEEE 92(8), 1283–1307 (2004)
Wilke, T.: Specifying timed state sequences in powerful decidable logics and timed automata. In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994 and ProCoS 1994. LNCS, vol. 863, p. 787. Springer, Heidelberg (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ouaknine, J., Worrell, J. (2006). Safety Metric Temporal Logic Is Fully Decidable. In: Hermanns, H., Palsberg, J. (eds) Tools and Algorithms for the Construction and Analysis of Systems. TACAS 2006. Lecture Notes in Computer Science, vol 3920. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11691372_27
Download citation
DOI: https://doi.org/10.1007/11691372_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-33056-1
Online ISBN: 978-3-540-33057-8
eBook Packages: Computer ScienceComputer Science (R0)