Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Role of Representations in Dynamic Knapsack Problems

  • Conference paper
Applications of Evolutionary Computing (EvoWorkshops 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3907))

Included in the following conference series:

Abstract

The effect of different representations has been thoroughly analyzed for evolutionary algorithms in stationary environments. However, the role of representations in dynamic environments has been largely neglected so far. In this paper, we empirically compare and analyze three different representations on the basis of a dynamic multi-dimensional knapsack problem. Our results indicate that indirect representations are particularly suitable for the dynamic multi-dimensional knapsack problem, because they implicitly provide a heuristic adaptation mechanism that improves the current solutions after a change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beasley, J.E.: Or-library. online, http://www.brunel.ac.uk/depts/ma/research/jeb/orlib/mknapinfo.html

  2. Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer, Dordrecht (2001)

    Google Scholar 

  3. Branke, J., Salihoglu, E., Uyar, S.: Towards an analysis of dynamic environments. In: Genetic and Evolutionary Computation Conference, pp. 1433–1439. ACM, New York (2005)

    Google Scholar 

  4. Cobb, H.G.: An investigation into the use of hypermutation as an adaptive operator in genetic algorithms having continuous, time-dependent nonstationary environments. Technical Report AIC-90-001, Naval Research Laboratory, Washington, USA (1990)

    Google Scholar 

  5. GLPK. GNU linear programming kit. online, http://www.gnu.org/software/glpk/glpk.html

  6. Gottlieb, J.: Evolutionary Algorithms for Combinatorial Optimization Problems. Phd, Technical University Clausthal, Germany (December 1999)

    Google Scholar 

  7. Gottlieb, J.: Permutation-based evolutionary algorithms for multidimensional knapsack problems. In: ACM Symposium on Applied Computing, vol. 1, pp. 408–414. ACM, New York (2000)

    Chapter  Google Scholar 

  8. Gottlieb, J.: On the feasibility problem of penalty-based evolutionary algorithms for knapsack problems. In: Boers, E.J.W., Gottlieb, J., Lanzi, P.L., Smith, R.E., Cagnoni, S., Hart, E., Raidl, G.R., Tijink, H. (eds.) EvoIASP 2001, EvoWorkshops 2001, EvoFlight 2001, EvoSTIM 2001, EvoCOP 2001, and EvoLearn 2001. LNCS, vol. 2037, pp. 50–60. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Raidl, G.R., Gottlieb, J.: The effects of locality on the dynamics of decoder-based evolutionary search. In: Genetic and Evolutionary Computation Conference, pp. 283–290. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  10. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments – a survey. IEEE Transactions on Evolutionary Computation 9(3), 303–317 (2005)

    Article  Google Scholar 

  11. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  12. Morrison, R.: Designing Evolutionary Algorithms for Dynamic Environments. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  13. Pirkul, H.: A heuristic solution procedure for the multiconstraint zero-one knapsack problem. Naval Research Logistics 34, 161–172 (1987)

    Article  MATH  Google Scholar 

  14. Raidl, G.R.: Weight-codings in a genetic algorithm for the multiconstraint knapsack problem. In: Congress on Evolutionary Computation, pp. 596–603. IEEE, Los Alamitos (1999)

    Google Scholar 

  15. Raidl, G.R., Gottlieb, J.: Empirical analysis of locality, heritability and heuristic bias in evolutionary algorithms: A case study for the multidimensional knapsack problem. Evolutionary Computation 13(4) (2005)

    Google Scholar 

  16. Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms. Physica (2002)

    Google Scholar 

  17. Weicker, K.: Evolutionary Algorithms and Dynamic Optimization Problems. Der Andere Verlag (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Branke, J., Orbayı, M., Uyar, Ş. (2006). The Role of Representations in Dynamic Knapsack Problems. In: Rothlauf, F., et al. Applications of Evolutionary Computing. EvoWorkshops 2006. Lecture Notes in Computer Science, vol 3907. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11732242_74

Download citation

  • DOI: https://doi.org/10.1007/11732242_74

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33237-4

  • Online ISBN: 978-3-540-33238-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics