Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Improving Prediction of Zinc Binding Sites by Modeling the Linkage Between Residues Close in Sequence

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3909))

Abstract

We describe and empirically evaluate machine learning methods for the prediction of zinc binding sites from protein sequences. We start by observing that a data set consisting of single residues as examples is affected by autocorrelation and we propose an ad-hoc remedy in which sequentially close pairs of candidate residues are classified as being jointly involved in the coordination of a zinc ion. We develop a kernel for this particular type of data that can handle variable length gaps between candidate coordinating residues. Our empirical evaluation on a data set of non redundant protein chains shows that explicit modeling the correlation between residues close in sequence allows us to gain a significant improvement in the prediction performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blom, N., Gammeltoft, S., Brunak, S.: Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J. Mol. Biol. 294, 1351–1362 (1999)

    Article  Google Scholar 

  2. Nielsen, H., Brunak, S., von Heijne, G.: Machine learning approaches for the prediction of signal peptides and other protein sorting signals. Protein Eng. 12(1), 3–9 (1999)

    Article  Google Scholar 

  3. Nielsen, H., Engelbrecht, J., Brunak, S., von Heijne, G.: Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 10, 1–6 (1997)

    Article  Google Scholar 

  4. Martelli, P.L., Fariselli, P., Casadio, R.: Prediction of disulfide-bonded cysteines in proteomes with a hidden neural network. Proteomics 4, 1665–1671 (2004)

    Article  Google Scholar 

  5. Fiser, A., Simon, I.: Predicting the oxidation state of cysteines by multiple sequence alignment. Bioinformatics 16, 251–256 (2000)

    Article  Google Scholar 

  6. Fariselli, P., Casadio, R.: Prediction of disulfide connectivity in proteins. Bioinformatics 17, 957–964 (2001)

    Article  Google Scholar 

  7. Vullo, A., Frasconi, P.: Disulfide connectivity prediction using recursive neural networks and evolutionary information. Bioinformatics 20, 653–659 (2004)

    Article  Google Scholar 

  8. Andreini, C., Bertini, I., Rosato, A.: A hint to search for metalloproteins in gene banks. Bioinformatics 20, 1373–1380 (2004)

    Article  Google Scholar 

  9. Passerini, A., Frasconi, P.: Learning to discriminate between ligand-bound and disulfide-bound cysteines. Protein Eng. Des. Sel. 17, 367–373 (2004)

    Article  Google Scholar 

  10. Rost, B., Sander, C.: Improved prediction of protein secondary structure by use of sequence profiles and neural networks. Proc. Natl. Acad. Sci. U.S.A. 90, 7558–7562 (1993)

    Article  Google Scholar 

  11. Jensen, D., Neville, J.: Linkage and autocorrelation cause feature selection bias in relational learning. In: Proceedings of the Nineteenth International Conference on Machine Learning (ICML 2002) (2002)

    Google Scholar 

  12. Taskar, B., Abbeel, P., Koller, D.: Discriminative probabilistic models for relational data. In: Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  13. Jensen, D., Neville, J., Gallagher, B.: Why collective inference improves relational classification. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2004)

    Google Scholar 

  14. Mika, S., Rost, B.: Uniqueprot: creating sequence-unique protein data sets. Nucleic Acids Res. 31, 3789–3791 (2003)

    Article  Google Scholar 

  15. Vallee, B.L., Auld, D.S.: Functional zinc-binding motifs in enzymes and DNA-binding proteins. Faraday Discuss, 47–65 (1992)

    Google Scholar 

  16. Cortes, C., Vapnik, V.: Support vector networks. Machine Learning 20, 1–25 (1995)

    Google Scholar 

  17. Schölkopf, B., Smola, A.: Learning with Kernels. The MIT Press, Cambridge (2002)

    Google Scholar 

  18. Shawe-Taylor, J., Cristianini, N.: Kernel methods for pattern analysis. Cambridge Univ. Press, Cambridge (2004)

    Google Scholar 

  19. Platt, J.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In: Smola, A., Bartlett, P., Schölkopf, B., Schuurmans, D. (eds.) Advances in Large Margin Classifiers. MIT Press, Cambridge (2000)

    Google Scholar 

  20. Altschul, S., Madden, T., Schaffer, A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.: Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Menchetti, S., Passerini, A., Frasconi, P., Andreini, C., Rosato, A. (2006). Improving Prediction of Zinc Binding Sites by Modeling the Linkage Between Residues Close in Sequence. In: Apostolico, A., Guerra, C., Istrail, S., Pevzner, P.A., Waterman, M. (eds) Research in Computational Molecular Biology. RECOMB 2006. Lecture Notes in Computer Science(), vol 3909. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11732990_26

Download citation

  • DOI: https://doi.org/10.1007/11732990_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33295-4

  • Online ISBN: 978-3-540-33296-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics