Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Ag-Tree: A Novel Structure for Range Queries in Data Warehouse Environments

  • Conference paper
Database Systems for Advanced Applications (DASFAA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3882))

Included in the following conference series:

  • 1068 Accesses

Abstract

In order to efficiently evaluate range-aggregate queries in data warehouse environments, several works on data cubes (such as the aggregate cubetree) are proposed. In the aggregate cubetree, each entry in every node stores the aggregate values of its corresponding subtree. Therefore, range-aggregate queries can be processed without visiting the child nodes whose parent nodes are fully included in the query range. However, the aggregate cubetree does not take range queries using partial dimensions and range queries without aggregation operations into account. That is, 1) a great deal of information that is irrelevant to the queries also has to be read from the disk for partially-dimensional range queries and 2) while it improves the performance of range queries with aggregate operations, it degrades the performance of the range queries without aggregate operations. In this paper, we proposed a novel index structure, called Aggregate-Tree (denoted as Ag-Tree), which gets rid of the above-mentioned weaknesses of the aggregate cubetree without any side effects. The experiments and discussions presented in this paper indicate that the new proposal is significant for range queries in data warehouse environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chaudhuri, S., Dayal, U.: An overview of data warehousing and OLAP technology. ACM SIGMOD Record 26(1), 65–74 (1997)

    Article  Google Scholar 

  2. Kimball, R.: The Data Warehouse Toolkit. John Wiley, Chichester (1996)

    Google Scholar 

  3. Roussopoulos, N.: Materialized Views and Data Warehouses. ACM SIGMOD Record 27(1), 21–26 (1998)

    Article  Google Scholar 

  4. Gray, J., Bosworth, A., Layman, A., Piramish, H.: Data Cube: A Relational Aggregation Operator Generalizing Group-By, Crosstab, and Sub-Totals. In: Proc. International Conference on Data Engineering (ICDE), pp. 152–159 (1996)

    Google Scholar 

  5. Guttman, A.: R-Trees: A Dynamic Index Structure for Spatial Searching. In: Proc. ACM SIGMOD International Conference on Management of Data, pp. 47–57 (1984)

    Google Scholar 

  6. Ho, C., Agrawal, R., Megiddo, N., Srikant, R.: Range Queries in OLAP Data Cubes. In: Proc. ACM SIGMOD International Conference on Management of Data, pp. 73–88 (1997)

    Google Scholar 

  7. Roussopoulos, N., Kotdis, Y., Roussopoulos, M.: Cubetree: Organization of and Bulk Incremental Update on the Data Cube. In: Proc. ACM SIGMOD International Conference on Management of Data, pp. 89–99 (1997)

    Google Scholar 

  8. Kotdis, Y., Roussopoulos, N.: An Alternative Storage Organization for ROLAP Aggregate Views Based on Cubetrees. In: Proc. ACM SIGMOD International Conference on Management of Data, pp. 249–258 (1998)

    Google Scholar 

  9. Gupta, H.: Selections of Views to Materialize in a Data Warehouse. In: Afrati, F.N., Kolaitis, P.G. (eds.) ICDT 1997. LNCS, vol. 1186, pp. 98–112. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  10. Mumick, I.S., Quass, D., Mumick, B.S.: Maintenance of Data Cubes and Summary Tables in a Warehouse. In: Proc. ACM SIGMOD International Conference on Management of Data. Tucson, Arizona, pp. 100–111 (May 1997)

    Google Scholar 

  11. Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing data cubes efficiently. In: Proc. ACM SIGMOD International Conference on Management of Data, pp. 205–216 (1996)

    Google Scholar 

  12. Sarawagi, S., Agrawal, R., Gupta, A.: On the computing the data cube. Research Report, IBM Almaden Research Center, Sanjose, Ca (1996)

    Google Scholar 

  13. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-tree: an Efficient and Robust Access Method for Points and Pectangles. In: Proc. ACM SIGMOD International Conference on Management of Data, Atlantic City, pp. 322–331 (May 1990)

    Google Scholar 

  14. Agrawal, S., Agrawal, R., Deshpande, P., et al.: On the Computation of Multidimensional Aggregates. In: Proc.International Conference on Very Large Databases (VLDB), pp. 506–521 (August 1996)

    Google Scholar 

  15. Hong, S., Song, B., Lee, S.: Efficient Execution of Range Aggregate Queries in Data Warehouse Environments. In: Kunii, H.S., Jajodia, S., Sølvberg, A. (eds.) ER 2001. LNCS, vol. 2224, pp. 299–310. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  16. Feng, Y., Makinouchi, A.: Adaptive R*-tree: An Efficient Access Method for Large Relational Datasets. IEICE Transaction on Information and Systems (submitted)

    Google Scholar 

  17. Zhang, C., Naughton, J., et al.: On Supporting Containment Queries in Relational Database Management Systems. In: Proc. SIGMOD International Conference on Management of Data, pp. 425–436 (2001)

    Google Scholar 

  18. Hjaltason, G.R., Samet, H.: Distance Browsing in Spatial Database. ACM Trans. on Database Systems 24(2), 265–318 (1999)

    Article  Google Scholar 

  19. Lakshmanan, L.V.S., Pei, J., Zhao, Y.: Qctrees: An Efficient Summary Structure for Semantic OLAP. In: Proc. ACM SIGMOD International Conference on Management of Data (2003)

    Google Scholar 

  20. Wang, W., Lu, H., Feng, J., Yu, J.X.: Condensed cube: An Effective Approach to Reducing Data Cube Size. In: Proc.Internatial Conference on Data Engineering (ICDE) (2002)

    Google Scholar 

  21. Xin, D., Han, J., Li, X., Wah, B.W.: Star-cubing: Computing Iceberg Cubes by Top-down and Bottom-up Integration. In: Aberer, K., Koubarakis, M., Kalogeraki, V. (eds.) VLDB 2003. LNCS, vol. 2944, Springer, Heidelberg (2004)

    Google Scholar 

  22. Feng, Y., Makinouchi, A.: Batch-Incremental Nearest Neighbor Search Algorithm and Its Performance Evaluation. IEICE Transaction on Information and Systems E86-D(9), 1856–1867 (2003)

    Google Scholar 

  23. Li, X., Han, J., Gonzalez, H.: High-Dimensional OLAP: A Minimal Cubing Approach. In: Proc. International Conference on Very Large Databases (VLDB), pp. 528–539 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Feng, Y., Makinouchi, A. (2006). Ag-Tree: A Novel Structure for Range Queries in Data Warehouse Environments. In: Li Lee, M., Tan, KL., Wuwongse, V. (eds) Database Systems for Advanced Applications. DASFAA 2006. Lecture Notes in Computer Science, vol 3882. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11733836_35

Download citation

  • DOI: https://doi.org/10.1007/11733836_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33337-1

  • Online ISBN: 978-3-540-33338-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics