Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Country Corruption Analysis with Self Organizing Maps and Support Vector Machines

  • Conference paper
Intelligence and Security Informatics (WISI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3917))

Included in the following conference series:

Abstract

During recent years, the empirical research on corruption has grown considerably. Possible links between government corruption and terrorism have attracted an increasing interest in this research field. Most of the existing literature discusses the topic from a socio-economical perspective and only few studies tackle this research field from a data mining point of view. In this paper, we apply data mining techniques onto a cross-country database linking macro-economical variables to perceived levels of corruption. In the first part, self organizing maps are applied to study the interconnections between these variables. Afterwards, support vector machines are trained on part of the data and used to forecast corruption for other countries. Large deviations for specific countries between these models’ predictions and the actual values can prove useful for further research. Finally, projection of the forecasts onto a self organizing map allows a detailed comparison between the different models’ behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gerring, J., Thacker, S.: political institutions and corruption: The role of unitarism and parliamentarism. The British Journal of Political Science 34, 295–330 (2004)

    Article  Google Scholar 

  2. Lambsdorff, J.: Corruption in empirical research: a review. Transparency International Working paper (1999)

    Google Scholar 

  3. Bohara, A., Mitchell, N., Mittendorff, C.: Compound democracy and the control of corruption: A cross-country investigation. The Policy Studies Journal 32(4), 481–499 (2004)

    Article  Google Scholar 

  4. Treisman, D.: The causes of corruption: a cross-national study. Journal of Public Economics 76(3), 339–457 (2000)

    Article  Google Scholar 

  5. Leite, C., Weidmann, J.: Does mother nature corrupt? natural resources, corruption and economical growth. International Monetary Fund Working Paper 99(85) (1999)

    Google Scholar 

  6. Swamy, A., Knack, S., Lee, Y., Azfar, O.: Gender and corruption. Journal of Development Economics 64, 25–55 (2001)

    Article  Google Scholar 

  7. Alesina, A., Weder, B.: Do corrupt governments receive less foreign aid? National Bureau of Economic Research Working Paper 7108 (1999)

    Google Scholar 

  8. Baesens, B., Van Gestel, T., Viaene, S., Stepanova, M., Suykens, J., Vanthienen, J.: Benchmarking state of the art classification algorithms for credit scoring. Journal of the Operational Research Society 54(6), 627–635 (2003)

    Article  MATH  Google Scholar 

  9. Suykens, J., Gestel, T.V., Brabanter, J.D., Moor, B.D., Vandewalle, J.: Least Squares Support Vector Machines. World Scientific, Singapore (2002)

    Book  MATH  Google Scholar 

  10. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biological Cybernetics 43, 59–69 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  11. Vesanto, J.: Som-based data visualization methods. Intelligent Data Analysis 3, 111–126 (1999)

    Article  MATH  Google Scholar 

  12. Honkela, T., Kaski, S., Lagus, K., Kohonen, T.: WEBSOM—self-organizing maps of document collections. In: Proceedings of WSOM 1997, Workshop on Self-Organizing Maps, Helsinki University of Technology, Neural Networks Research Centre, Espoo, Finland, June 4-6, pp. 310–315 (1997)

    Google Scholar 

  13. Brockett, P., Xia, X., Derrig, R.: Using kohonen’s self-organizing feature map to uncover automobile bodily injury claims fraud. International Journal of Risk and Insurance 65, 245–274 (1998)

    Article  Google Scholar 

  14. Kohonen, T.: Self-Organising Maps. Springer, Heidelberg (1995)

    Book  Google Scholar 

  15. Deboeck, G., Kohonen, T.: Visual Explorations in Finance with selforganizing maps. Springer, Heidelberg (1998)

    Book  MATH  Google Scholar 

  16. CIA, http://www.cia.gov/cia/publications/factbook/

  17. Transparency International, http://www.transparency.org/

  18. Freedom House: Freedom in the world country ratings (2005)

    Google Scholar 

  19. Vesanto, J., Alhoniemi, E.: Clustering of the self-organizing map. IEEE Transactions on Neural Networks 11(3), 586–600 (2000)

    Article  Google Scholar 

  20. Azcarraga, A., Hsieh, M., Pan, S., Setiono, R.: Extracting salient dimensions for automatic som labeling. Transactions on Systems, Management and Cybernetics, Part C 35(4), 595–600 (2005)

    Article  Google Scholar 

  21. Lagus, K., Kaski, S.: Keyword selection method for characterizing text document maps. In: Proceedings of ICANN 1999, Ninth International Conference on Artificial Neural Networks, pp. 371–376. IEE (1999)

    Google Scholar 

  22. Rauber, A., Merkl, D.: Automatic labeling of self-organizing maps: Making a treasure-map reveal its secrets. In: Zhong, N., Zhou, L. (eds.) PAKDD 1999. LNCS (LNAI), vol. 1574, pp. 228–237. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  23. Montinola, G., Jackman, R.: Sources of corruption: a cross-country study. British Journal of Political Science 32, 147–170 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huysmans, J., Martens, D., Baesens, B., Vanthienen, J., Van Gestel, T. (2006). Country Corruption Analysis with Self Organizing Maps and Support Vector Machines. In: Chen, H., Wang, FY., Yang, C.C., Zeng, D., Chau, M., Chang, K. (eds) Intelligence and Security Informatics. WISI 2006. Lecture Notes in Computer Science, vol 3917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11734628_13

Download citation

  • DOI: https://doi.org/10.1007/11734628_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33361-6

  • Online ISBN: 978-3-540-33362-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics