Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Modified Genetic Algorithm for the Beam Angle Optimization Problem in Intensity-Modulated Radiotherapy Planning

  • Conference paper
Artificial Evolution (EA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3871))

Abstract

In this paper, a modified genetic algorithm (GA) is proposed to improve the efficiency of the beam angle optimization (BAO) problem in intensity-modulated radiotherapy (IMRT). Two modifications are made to GA in this study: (1) a new operation named sorting operation is introduced to sort the gene in each chromosome before the crossover operation, and (2) expert knowledge about tumor treatment is employed to guide the GA evolution. Two types of expert knowledge are employed, i.e., beam orientation constraints and beam configuration templates. The user-defined knowledge is used to reduce the search space and guide the optimization process. The sorting operation is introduced to inherently improve the evolution performance for the specified ABO problem. The beam angles are selected using GA, and the intensity maps of the corresponding beams are optimized using a conjugate gradient (CG) method. The comparisons of the preliminary optimization results on a clinical prostate case show that the proposed optimization algorithm can slightly or heavily improve the computation efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Webb, S.: Intensity-modulated Radiation Therapy. Bristol and Philadelphia, Institute of Physics Publishing (2000)

    Google Scholar 

  2. Spirou, S.V., Chui, C.S.: A gradient inverse planning algorithm with dose-volume constraints. Med. Phys. 25, 321–333 (1998)

    Article  Google Scholar 

  3. Pugachev, A., Boyer, A.L., Xing, L.: Beam orientation optimization in intensity-modulated radiation treatment planning. Med. Phys. 27, 1238–1245 (2000)

    Article  Google Scholar 

  4. Hou, Q., Wang, J., Chen, Y., Galvin, J.M.: Beam orientation optimization for IMRT by a hybrid method of genetic algorithm and the simulated dynamics. Med. Phys. 30, 2360–2376 (2003)

    Article  Google Scholar 

  5. Gaede, S., Wong, E., Rasmussen, H.: An algorithm for systematic selection of beam directions for IMRT. Med. Phys. 31, 376–388 (2004)

    Article  Google Scholar 

  6. Djajaputra, D., Wu, Q., Wu, Y., Mohan, R.: Algorithm and performance of a clinical IMRT beam-angle optimization system. Phy. Med. Biol. 48, 3191–3212 (2003)

    Article  Google Scholar 

  7. Li, Y., Yao, J., Yao, D.: Automatic beam angle selection in IMRT planning using genetic algorithm. Phy. Med. Biol. 49, 1915–1932 (2004)

    Article  Google Scholar 

  8. Souza, W.D., Meyer, R.R., Shi, L.: Selection of beam orientations in intensity-modulated radiation therapy using single-beam indices and integer programming. Phy. Med. Biol. 49, 3465–3481 (2004)

    Article  Google Scholar 

  9. Wang, X., Zhang, X., Dong, L., Liu, H., Wu, Q., Mohan, R.: Development of methods for beam angle optimization for IMRT using an accelerated exhaustive search strategy. Int. J. Radiat. Oncol. Boil. Phys. 60, 1325–1337 (2004)

    Article  Google Scholar 

  10. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading, Massachusetts (1989)

    MATH  Google Scholar 

  11. Yu, Y., Schell, M.C.: A genetic algorithm for the optimization prostate implants. Med. Phys. 23, 2085–2091 (1996)

    Article  Google Scholar 

  12. Wu, X., Zhu, Y.: A mixed-encoding genetic algorithm with beam constraint for conformal radiotherapy treatment planning. Med. Phys. 27, 2508–2516 (2000)

    Article  Google Scholar 

  13. De Jong, K., Potter, M., Spears, W.: Using problem generators to explore the effects of epistasis. In: Proceedings of the Seventh International Conference on Genetic Algorithms, pp. 338–345 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, Y., Yao, D., Zheng, J., Yao, J. (2006). A Modified Genetic Algorithm for the Beam Angle Optimization Problem in Intensity-Modulated Radiotherapy Planning. In: Talbi, EG., Liardet, P., Collet, P., Lutton, E., Schoenauer, M. (eds) Artificial Evolution. EA 2005. Lecture Notes in Computer Science, vol 3871. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11740698_9

Download citation

  • DOI: https://doi.org/10.1007/11740698_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33589-4

  • Online ISBN: 978-3-540-33590-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics