Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Performance-Based Approach to Dynamic Workload Distribution for Master-Slave Applications on Grid Environments

  • Conference paper
Advances in Grid and Pervasive Computing (GPC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3947))

Included in the following conference series:

Abstract

Effective workload distribution techniques can significantly reduce the total completion time of a program on grid computing environments. In this paper, we propose a dynamic performance-based workload partition approach for master-slave types of applications on grids. Furthermore, we implement two types of applications and conduct the experimentations on our grid testbed. Experimental results showed that our method could execute more efficiently than traditional schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Divisible Load Theory, http://www.ee.sunysb.edu/~tom/MATBE/index.html

  2. Global Grid Forum, http://www.ggf.org/

  3. Introduction to Grid Computing with Globus, http://www.ibm.com/redbooks

  4. KISTI Grid Testbed, http://Gridtest.hpcnet.ne.kr/

  5. MPICH, http://www-unix.mcs.anl.gov/mpi/mpich/

  6. MPICH-G2, http://www.hpclab.niu.edu/mpi/

  7. Network Weather Service, http://nws.cs.ucsb.edu/

  8. Sun ONE Grid Engine, http://wwws.sun.com/software/Gridware/

  9. TeraGrid, http://www.teraGrid.org/

  10. The Globus Project, http://www.globus.org/

  11. THU Bandwidth Statistics GUI, http://monitor.hpc.csie.thu.edu.tw/tiger/

  12. Agrawal, R., Shafer, J.C.: Parallel Mining of Association Rules. IEEE Transactions on Knowledge and Data Engineering 8(6), 962–969 (1996)

    Article  Google Scholar 

  13. Agrawal, R., Srikant, R.: Fast algorithms for Mining Association Rules. In: Proc. 20th Very Large Data Bases Conf., pp. 487–499 (1994)

    Google Scholar 

  14. Baker, M.A., Fox, G.C.: Metacomputing: Harnessing Informal Supercomputers. In: High Performance Cluster Computing. Prentice-Hall, Englewood Cliffs (1999)

    Google Scholar 

  15. Beaumont, O., Casanova, H., Legrand, A., Robert, Y., Yang, Y.: Scheduling Divisible Loads on Star and Tree Networks: Results and Open Problems. IEEE Transactions on Parallel and Distributed Systems 16(3), 207–218 (2005)

    Article  Google Scholar 

  16. Bharadwaj, V., Ghose, D., Mani, V., Robertazzi, T.G.: Scheduling Divisible Loads in Parallel and Distributed Systems. IEEE Press, Los Alamitos (1996)

    Google Scholar 

  17. Bharadwaj, V., Ghose, D., Robertazzi, T.G.: Divisible Load Theory: A New Paradigm for Load Scheduling in Distributed Systems. Cluster Computing 6(1), 7–18 (2003)

    Article  Google Scholar 

  18. Cheng, K.-W., Yang, C.-T., Lai, C.-L., Chang, S.-C.: A Parallel Loop Self-Scheduling on Grid Computing Environments. In: Proceedings of the 2004 IEEE International Symposium on Parallel Architectures, Algorithms and Networks, KH, China, May 2004, pp. 409–414 (2004)

    Google Scholar 

  19. Comino, N., Narasimhan, V.L.: A Novel Data Distribution Technique for Host-Client Type Parallel Applications. IEEE Transactions on Parallel and Distributed Systems 13(2), 97–110 (2002)

    Article  Google Scholar 

  20. Drozdowski, M., Lawenda, M.: On Optimum Multi-installment Divisible Load Processing in Heterogeneous Distributed Systems. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648, pp. 231–240. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  21. Foster, I., Karonis, N.: A Grid-Enabled MPI: Message Passing in Heterogeneous Distributed Computing Systems. In: Proc. 1998 SC Conference (November 1998)

    Google Scholar 

  22. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable Virtual Organizations. International J. Supercomputer Applications 15(3) (2001)

    Google Scholar 

  23. Foster, I., Kesselman, C.: Globus: A Metacomputing Infrastructure Toolkit. International J. Supercomputer Applications 11(2), 115–128 (1997)

    Google Scholar 

  24. Foster, I.: The Grid: A New Infrastructure for 21st Century Science. Physics Today 55(2), 42–47 (2002)

    Article  Google Scholar 

  25. Foster, I., Kesselman, C. (eds.): The Grid: Blueprint for a New Computing Infrastructure, 1st edn. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  26. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, San Francisco (2001)

    MATH  Google Scholar 

  27. Hummel, S.F., Schonberg, E., Flynn, L.E.: Factoring: a method scheme for scheduling parallel loops. Communications of the ACM 35, 90–101 (1992)

    Article  Google Scholar 

  28. Li, H., Tandri, S., Stumm, M., Sevcik, K.C.: Locality and Loop Scheduling on NUMA Multiprocessors. In: Proceedings of the 1993 International Conference on Parallel Processing, vol. II, pp. 140–147 (1993)

    Google Scholar 

  29. Polychronopoulos, C.D., Kuck, D.: Guided Self-Scheduling: a Practical Scheduling Scheme for Parallel Supercomputers. IEEE Trans. on Computers 36(12), 1425–1439 (1987)

    Article  Google Scholar 

  30. Robertazzi, T.G.: Ten Reasons to Use Divisible Load Theory. Computer 36(5), 63–68 (2003)

    Article  Google Scholar 

  31. Shih, W.-C., Yang, C.-T., Tseng, S.-S.: A Performance-Based Parallel Loop Self-Scheduling on Grid Environments. In: Jin, H., Reed, D., Jiang, W. (eds.) NPC 2005. LNCS, vol. 3779, pp. 48–55. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  32. Shih, W.-C., Yang, C.-T., Tseng, S.-S.: A Hybrid Parallel Loop Scheduling Scheme on Grid Environments. In: Zhuge, H., Fox, G.C. (eds.) GCC 2005. LNCS, vol. 3795, pp. 370–381. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  33. Smarr, L., Catlett, C.: Metacomputing. Communications of the ACM 35(6), 44–52 (1992)

    Article  Google Scholar 

  34. Tzen, T.H., Ni, L.M.: Trapezoid self-scheduling: a practical scheduling scheme for parallel compilers. IEEE Transactions on Parallel and Distributed Systems 4, 87–98 (1993)

    Article  Google Scholar 

  35. Yang, C.-T., Chang, S.-C.: A Parallel Loop Self-Scheduling on Extremely Heterogeneous PC Clusters. Journal of Information Science and Engineering 20(2), 263–273 (2004)

    Google Scholar 

  36. Yang, C.-T., Cheng, K.-W., Li, K.-C.: An Efficient Parallel Loop Self-scheduling on Grid Environments. In: Jin, H., Gao, G.R., Xu, Z., Chen, H. (eds.) NPC 2004. LNCS, vol. 3222, pp. 92–100. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  37. Zaki, M.J.: Parallel and Distributed Association Mining: A Survey. IEEE Concurrency 7(4), 14–25 (1999)

    Article  Google Scholar 

  38. Banino, C., Beaumont, O., Carter, L., Ferrante, J., Legrand, A., Robert, Y.: Scheduling strategies for master-slave tasking on heterogeneous processor platforms. IEEE Transactions on Parallel and Distributed Systems 15(4), 319–330 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shih, WC., Yang, CT., Tseng, SS. (2006). A Performance-Based Approach to Dynamic Workload Distribution for Master-Slave Applications on Grid Environments. In: Chung, YC., Moreira, J.E. (eds) Advances in Grid and Pervasive Computing. GPC 2006. Lecture Notes in Computer Science, vol 3947. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11745693_8

Download citation

  • DOI: https://doi.org/10.1007/11745693_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33809-3

  • Online ISBN: 978-3-540-33810-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics