Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Enhanced Fuzzy Single Layer Learning Algorithm Using Automatic Tuning of Threshold

  • Conference paper
Computational Science and Its Applications - ICCSA 2006 (ICCSA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3982))

Included in the following conference series:

  • 1456 Accesses

Abstract

In this paper, we proposed an enhanced fuzzy single layer learning algorithm using the dynamic adjustment of threshold. For performance evaluation, the proposed method was applied to the XOR problem, which is used as a benchmark in the field of pattern recognition, and the recognition of digital image in a practical image processing application. As a result of experiment, though the method does not always guarantee the convergence, it shows the improved learning time and the high convergence rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Judith, E.D.: Neural Network Architectures An Introduction. Van Nostrand Reinhold, New York (1990)

    Google Scholar 

  2. Gupta, M.M., Qi, J.: On Fuzzy Neuron Models. Proceedings of IJCNN 2, 431–435 (1991)

    MathSciNet  Google Scholar 

  3. Goh, T.H., Wang, P.Z., Lui, H.C.: Learning Algorithm for Enhanced Fuzzy Perceptron. Proceedings of IJCNN 2, 435–440 (1992)

    Google Scholar 

  4. Kim, K.B., Cha, E.Y.: A New Single Layer Perceptron using Fuzzy Neural Controller. In: Jaime, O., Ariel, S. (eds.) Simulators International XII, vol. 27(3), pp. 341–343 (1995)

    Google Scholar 

  5. Kim, K.B., Kim, S., Joo, Y., Oh, A.S.: Enhanced Fuzzy Single Layer Perceptron. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3496, pp. 603–608. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Kim, K.B., Seo, C.J., Yang, H.K.: A Biological Fuzzy Multilayer Perceptron Algorithm. Journal of KIMICS 1(1), 99–103 (2003)

    Google Scholar 

  7. Kim, T.K., Yun, H.G., Lho, Y.W., Kim, K.B.: An Educational Matters Administration System on the Web by Using Image Recognition. In: Proceedings of Korea Intelligent Information Systems, pp. 203–209 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, KB., Lee, BK., Kim, SH. (2006). Enhanced Fuzzy Single Layer Learning Algorithm Using Automatic Tuning of Threshold. In: Gavrilova, M., et al. Computational Science and Its Applications - ICCSA 2006. ICCSA 2006. Lecture Notes in Computer Science, vol 3982. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11751595_19

Download citation

  • DOI: https://doi.org/10.1007/11751595_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34075-1

  • Online ISBN: 978-3-540-34076-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics