Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Using Box-Muller with Low Discrepancy Points

  • Conference paper
Computational Science and Its Applications - ICCSA 2006 (ICCSA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3984))

Included in the following conference series:

Abstract

To use quasi-Monte Carlo methods, the integral is usually first (implicitly) transformed to the unit cube. Integrals weighted with the multivariate normal density are usually transformed to the unit cube with the inverse of the multivariate normal cumulative distribution function. However, other transformations are possible, amongst which the transformation by Box and Muller. The danger in using a non-separable transformation is that it might break the low discrepancy structure which makes quasi-Monte Carlo converge faster than regular Monte Carlo. We examine several transformations visually, theoretically and practically and show that it is sometimes preferable to use other transformations than the inverse cumulative distribution function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Box, G.E.P., Muller, M.E.: A note on the generation of random normal deviates. Ann. Math. Stat. 29, 610–611 (1958)

    Article  MATH  Google Scholar 

  2. Berblinger, M., Schlier, C., Weiss, T.: Monte Carlo integration with quasi-random numbers: experience with discontinuous integrands. Computer Physics Communications 99, 151–162 (1997)

    Article  MATH  Google Scholar 

  3. Cools, R., Nuyens, D.: The role of structured matrices for the construction of integration lattices (submitted)

    Google Scholar 

  4. Devroye, L.: Non-uniform random variate generation. Springer, New York (1986)

    MATH  Google Scholar 

  5. Fang, K.-T., Wang, Y.: Number theoretic methods in statistics. Chapman and Hall, London (1994)

    MATH  Google Scholar 

  6. González, J., Tuerlinckx, F., De Boeck, P., Cools, R.: Numerical integration in logistic-normal models (submitted)

    Google Scholar 

  7. Hartinger, J., Kainhofer, R.F., Tichy, R.F.: Quasi-Monte Carlo algorithms for unbounded, weighted integration problems. Journal of Complexity 20(5), 654–668 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Lemieux, C., L’Ecuyer, P.: Efficiency improvement by lattice rules for pricing Asian options. In: WSC 1998: Proceedings of the 30th conference on Winter simulation. IEEE Computer Society Press, Los Alamitos (1998)

    Google Scholar 

  9. Marsaglia, G., Bray, T.A.: A convenient method for generating normal variables. SIAM Review 6(3), 260–264 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  10. Niederreiter, H.: Random number generation and quasi-Monte Carlo methods. In: CBMS-NSF regional conference series in applied mathematics, SIAM, Philadelphia, vol. 63 (1992)

    Google Scholar 

  11. Nuyens, D., Cools, R.: Fast component-by-component construction, a reprise for different kernels. In: Niederreiter, H., Harald, Talay, D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2004, pp. 371–385. Springer, Berlin (2006)

    Google Scholar 

  12. Owen, A.B.: Quasi-Monte Carlo for integrands with point singularities at unknown locations. In: Niederreiter, H., Harald, Talay, D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2004, pp. 403–418. Springer, Berlin (2006)

    Chapter  Google Scholar 

  13. Owen, A.B.: Halton sequences avoid the origin, SIAM Review 48 (to appear)

    Google Scholar 

  14. Sobol, I.M.: On the distribution of points in a cube and the approximate evaluation of integrals. Zh. Vychisl. Mat. i Mat. Fiz. 7(4), 784–802 (1967)

    MathSciNet  Google Scholar 

  15. Paskov, S.H.: New methodologies for valuing derivatives. In: Pliska, S., Dempster, M. (eds.) Mathematics of Derivative Securities, pp. 545–582. Cambridge University Press, Cambridge (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pillards, T., Cools, R. (2006). Using Box-Muller with Low Discrepancy Points. In: Gavrilova, M.L., et al. Computational Science and Its Applications - ICCSA 2006. ICCSA 2006. Lecture Notes in Computer Science, vol 3984. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11751649_86

Download citation

  • DOI: https://doi.org/10.1007/11751649_86

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34079-9

  • Online ISBN: 978-3-540-34080-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics