Abstract
To use quasi-Monte Carlo methods, the integral is usually first (implicitly) transformed to the unit cube. Integrals weighted with the multivariate normal density are usually transformed to the unit cube with the inverse of the multivariate normal cumulative distribution function. However, other transformations are possible, amongst which the transformation by Box and Muller. The danger in using a non-separable transformation is that it might break the low discrepancy structure which makes quasi-Monte Carlo converge faster than regular Monte Carlo. We examine several transformations visually, theoretically and practically and show that it is sometimes preferable to use other transformations than the inverse cumulative distribution function.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Box, G.E.P., Muller, M.E.: A note on the generation of random normal deviates. Ann. Math. Stat. 29, 610–611 (1958)
Berblinger, M., Schlier, C., Weiss, T.: Monte Carlo integration with quasi-random numbers: experience with discontinuous integrands. Computer Physics Communications 99, 151–162 (1997)
Cools, R., Nuyens, D.: The role of structured matrices for the construction of integration lattices (submitted)
Devroye, L.: Non-uniform random variate generation. Springer, New York (1986)
Fang, K.-T., Wang, Y.: Number theoretic methods in statistics. Chapman and Hall, London (1994)
González, J., Tuerlinckx, F., De Boeck, P., Cools, R.: Numerical integration in logistic-normal models (submitted)
Hartinger, J., Kainhofer, R.F., Tichy, R.F.: Quasi-Monte Carlo algorithms for unbounded, weighted integration problems. Journal of Complexity 20(5), 654–668 (2004)
Lemieux, C., L’Ecuyer, P.: Efficiency improvement by lattice rules for pricing Asian options. In: WSC 1998: Proceedings of the 30th conference on Winter simulation. IEEE Computer Society Press, Los Alamitos (1998)
Marsaglia, G., Bray, T.A.: A convenient method for generating normal variables. SIAM Review 6(3), 260–264 (1964)
Niederreiter, H.: Random number generation and quasi-Monte Carlo methods. In: CBMS-NSF regional conference series in applied mathematics, SIAM, Philadelphia, vol. 63 (1992)
Nuyens, D., Cools, R.: Fast component-by-component construction, a reprise for different kernels. In: Niederreiter, H., Harald, Talay, D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2004, pp. 371–385. Springer, Berlin (2006)
Owen, A.B.: Quasi-Monte Carlo for integrands with point singularities at unknown locations. In: Niederreiter, H., Harald, Talay, D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2004, pp. 403–418. Springer, Berlin (2006)
Owen, A.B.: Halton sequences avoid the origin, SIAM Review 48 (to appear)
Sobol, I.M.: On the distribution of points in a cube and the approximate evaluation of integrals. Zh. Vychisl. Mat. i Mat. Fiz. 7(4), 784–802 (1967)
Paskov, S.H.: New methodologies for valuing derivatives. In: Pliska, S., Dempster, M. (eds.) Mathematics of Derivative Securities, pp. 545–582. Cambridge University Press, Cambridge (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pillards, T., Cools, R. (2006). Using Box-Muller with Low Discrepancy Points. In: Gavrilova, M.L., et al. Computational Science and Its Applications - ICCSA 2006. ICCSA 2006. Lecture Notes in Computer Science, vol 3984. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11751649_86
Download citation
DOI: https://doi.org/10.1007/11751649_86
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34079-9
Online ISBN: 978-3-540-34080-5
eBook Packages: Computer ScienceComputer Science (R0)