Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Monitoring the Block Conjugate Gradient Convergence Within the Inexact Inverse Subspace Iteration

  • Conference paper
Parallel Processing and Applied Mathematics (PPAM 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3911))

  • 879 Accesses

Abstract

We propose an algorithm called BlockCGSI to compute some partial spectral information related to the ill-conditioned part of a given coefficient matrix. This information can then be used to improve the solution of consecutive linear systems with the same coefficient matrix and changing right-hand sides.

The BlockCGSI algorithm combines the block Conjugate Gradient with the inverse Subspace Iteration. We indicate how to reduce the total amount of computational work by controlling appropriately the accuracy when solving the linear systems at each inverse iteration. We also improve the global convergence of the algorithm by means of polynomial filters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Balsa, C., Palma, J., Ruiz, D.: Partial spectral information from linear systems to speed-up numerical simulations in computational fluid dynamics. In: Daydé, M., Dongarra, J., Hernández, V., Palma, J.M.L.M. (eds.) VECPAR 2004. LNCS, vol. 3402, pp. 703–719. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Carpentieri, B., Duff, I., Giraud, L.: A class of spectral two-level preconditioners. SIAM Journal on Scientific Computing 25, 749–765 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Parlett, B.N.: The Symmetric Eigenvalue Problem. SIAM, Philadelphia (1998)

    Google Scholar 

  4. O’Leary, D.P.: The block conjugate gradient algorithm and related methods. Linear Algebra and its Applicattions (29), 293–322 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arioli, M., Duff, I., Ruiz, D., Sadkane, M.: Block Lanczos techniques for accelerating the block cimmino method. SIAM Journal on Scientific and Statistical Computing 16(6), 1478–1511 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arioli, M., Ruiz, D.: Block conjugate gradient with subspace iteration for solving linear systems. In: Margenov, S., Vassilevski, P. (eds.) Iterative Methods in Linear Algebra, Second IMACS Symposium on Iterative Methods in Linear Algebra, Blagoevgrad, Bulgaria, June 1995, pp. 64–79 (1995)

    Google Scholar 

  7. Giraud, L., Ruiz, D., Touhami, A.: A comparative study of iterative solvers exploiting spectral information for SPD systems. Technical Report RT/PA/04/40, CERFACS, Also Technical Report TR/TLSE/04/03, ENSEEIHT-IRIT, Toulouse, France (2004)

    Google Scholar 

  8. Golub, G.H., Loan, C.F.V.: Matrix Computation. The Johns Hopkins University Press, Baltimore (1983)

    MATH  Google Scholar 

  9. Golub, G.H., Ye, Q.: Inexact inverse iteration for generalized eigenvalue problems. BIT 40, 671–684 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Rigal, J.L., Gaches, J.: On the compatibility of a given solution with the data of a linear system. Journal of the ACM 14(3), 543–548 (1967)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Balsa, C., Daydé, M., Guivarc’h, R., Palma, J.L., Ruiz, D. (2006). Monitoring the Block Conjugate Gradient Convergence Within the Inexact Inverse Subspace Iteration. In: Wyrzykowski, R., Dongarra, J., Meyer, N., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2005. Lecture Notes in Computer Science, vol 3911. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11752578_60

Download citation

  • DOI: https://doi.org/10.1007/11752578_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34141-3

  • Online ISBN: 978-3-540-34142-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics