Abstract
We propose an algorithm called BlockCGSI to compute some partial spectral information related to the ill-conditioned part of a given coefficient matrix. This information can then be used to improve the solution of consecutive linear systems with the same coefficient matrix and changing right-hand sides.
The BlockCGSI algorithm combines the block Conjugate Gradient with the inverse Subspace Iteration. We indicate how to reduce the total amount of computational work by controlling appropriately the accuracy when solving the linear systems at each inverse iteration. We also improve the global convergence of the algorithm by means of polynomial filters.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Balsa, C., Palma, J., Ruiz, D.: Partial spectral information from linear systems to speed-up numerical simulations in computational fluid dynamics. In: Daydé, M., Dongarra, J., Hernández, V., Palma, J.M.L.M. (eds.) VECPAR 2004. LNCS, vol. 3402, pp. 703–719. Springer, Heidelberg (2005)
Carpentieri, B., Duff, I., Giraud, L.: A class of spectral two-level preconditioners. SIAM Journal on Scientific Computing 25, 749–765 (2003)
Parlett, B.N.: The Symmetric Eigenvalue Problem. SIAM, Philadelphia (1998)
O’Leary, D.P.: The block conjugate gradient algorithm and related methods. Linear Algebra and its Applicattions (29), 293–322 (1980)
Arioli, M., Duff, I., Ruiz, D., Sadkane, M.: Block Lanczos techniques for accelerating the block cimmino method. SIAM Journal on Scientific and Statistical Computing 16(6), 1478–1511 (1995)
Arioli, M., Ruiz, D.: Block conjugate gradient with subspace iteration for solving linear systems. In: Margenov, S., Vassilevski, P. (eds.) Iterative Methods in Linear Algebra, Second IMACS Symposium on Iterative Methods in Linear Algebra, Blagoevgrad, Bulgaria, June 1995, pp. 64–79 (1995)
Giraud, L., Ruiz, D., Touhami, A.: A comparative study of iterative solvers exploiting spectral information for SPD systems. Technical Report RT/PA/04/40, CERFACS, Also Technical Report TR/TLSE/04/03, ENSEEIHT-IRIT, Toulouse, France (2004)
Golub, G.H., Loan, C.F.V.: Matrix Computation. The Johns Hopkins University Press, Baltimore (1983)
Golub, G.H., Ye, Q.: Inexact inverse iteration for generalized eigenvalue problems. BIT 40, 671–684 (2000)
Rigal, J.L., Gaches, J.: On the compatibility of a given solution with the data of a linear system. Journal of the ACM 14(3), 543–548 (1967)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Balsa, C., Daydé, M., Guivarc’h, R., Palma, J.L., Ruiz, D. (2006). Monitoring the Block Conjugate Gradient Convergence Within the Inexact Inverse Subspace Iteration. In: Wyrzykowski, R., Dongarra, J., Meyer, N., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2005. Lecture Notes in Computer Science, vol 3911. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11752578_60
Download citation
DOI: https://doi.org/10.1007/11752578_60
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34141-3
Online ISBN: 978-3-540-34142-0
eBook Packages: Computer ScienceComputer Science (R0)