Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Incremental Branching Programs

Extended Abstract

  • Conference paper
Computer Science – Theory and Applications (CSR 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3967))

Included in the following conference series:

Abstract

We propose a new model of restricted branching programs which we call incremental branching programs. We show that syntactic incremental branching programs capture previously studied structured models of computation for the problem GEN, namely marking machines [Co74] and Poon’s extension [Po93] of jumping automata on graphs [CoRa80]. We then prove exponential size lower bounds for our syntactic incremental model, and for some other restricted branching program models as well. We further show that nondeterministic syntactic incremental branching programs are provably stronger than their deterministic counterpart when solving a natural NL-complete GEN subproblem. It remains open if syntactic incremental branching programs are as powerful as unrestricted branching programs for GEN problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barrington, D., McKenzie, P.: Oracle branching programs and Logspace versus P. Information and Computation 95, 96–115 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beame, P., Jayram, T.S., Saks, M.E.: Time-Space Tradeoffs for Branching Programs. J. Computer and Systems Science 63(4), 542–572 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berkowitz, S.J.: On some relationships between monotone and non-monotone circuit complexity, University of Toronto, Computer Science Department (manuscript, 1981)

    Google Scholar 

  4. Borodin, A., Cook, S.A.: A time-space trade-off for sorting on a general sequential model of computation. SIAM J. on Computing 11(2), 287–297 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borodin, A., Razborov, A., Smolensky, R.: On lower bounds for read-k-times branching programs. Computational Complexity 3, 1–18 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cook, S.A.: Characterizations of pushdown machines in terms of time-bounded computers. J. of the Association for Computing Machinery 18(1), 4–18 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cook, S.A.: An observation on time-storage trade-off. J. Computer and Systems Science 9(3), 308–316 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cook, S.A., Rackoff, C.W.: Space lower bounds for maze threadability on restricted machines. SIAM J. on Computing 9, 636–652 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  9. Edmonds, J., Poon, C.K., Achlioptas, D.: Tight lower bounds for st-connectivity on the NNJAG model. SIAM J. on Computing 28(6), 2257–2284 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gál, A., Koucký, M., McKenzie, P.: Incremental branching programs. ECCC TR05-136, 1–18 (2005)

    Google Scholar 

  11. Jones, N.D., Laaser, W.T.: Complete problems for deterministic polynomial time. Theoretical Computer Science 3, 105–117 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jukna, S.: A note on read-k-times branching programs. RAIRO Theoretical Informatics and Applications 29, 75–83

    Google Scholar 

  13. Karchmer, M., Wigderson, A.: Monotone circuits for connectivity require super-logarithmic depth. In: Proc. of the 20th ACM Symp. on the Theory of Computing, pp. 539–550 (1988); Full version in: SIAM J. on Disc. Math. 3(2), 255–265 (1990)

    Google Scholar 

  14. Paul, W.J., Tarjan, R.E., Celoni, J.R.: Space bounds for a game on graphs. Mathematical Systems Theory 10, 239–251 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  15. Paterson, M.S., Hewitt, C.E.: Comparative schematology. In: Record of Project MAC Conference on Concurrent Systems and Parallel Computations (June 1970), pp. 119–128. ACM, New Jersey (1970)

    Google Scholar 

  16. Poon, C.K.: Space bounds for graph connectivity problems on node-named JAGs and node-ordered JAGs. In: Proc. of the 34th IEEE Symp. on the Foundations of Computer Science, pp. 218–227 (1993)

    Google Scholar 

  17. Razborov, A.: Lower bounds for deterministic and nondeterministic branching programs. In: Budach, L. (ed.) FCT 1991. LNCS, vol. 529, pp. 47–60. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  18. Raz, R., McKenzie, P.: Separation of the monotone NC hierarchy. Combinatorica 19(3), 403–435 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Savitch, W.J.: Relationships between nondeterministic and deterministic tape complexities. J. Computer and Systems Science 4(2), 177–192 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wegener, I.: The complexity of Boolean functions. Wiley-Teubner (1987)

    Google Scholar 

  21. Wegener, I.: Branching programs and binary decision diagrams. SIAM Monographs on Discrete Mathematics and Applications (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gál, A., Koucký, M., McKenzie, P. (2006). Incremental Branching Programs. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds) Computer Science – Theory and Applications. CSR 2006. Lecture Notes in Computer Science, vol 3967. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11753728_20

Download citation

  • DOI: https://doi.org/10.1007/11753728_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34166-6

  • Online ISBN: 978-3-540-34168-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics