Abstract
Problems that can be sampled randomly are a good source of test suites for comparing quality of constraint satisfaction techniques. Quasigroup problems are representatives of structured random problems that are closer to real-life problems and hence more suitable for benchmarking. In this paper, we describe in detail generators for Quasigroup Completion Problem (QCP) and Quasigroups with Holes (QWH). In particular, we study an improvement of the generator for QCP that produces a larger number of satisfiable problems by using propagation through the all-different constraint. We also re-formulate the algorithm for generating QWH that is much faster than the original generator. Finally, we provide an experimental comparison of all presented generators.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Achlioptas, D., Gomes, C., Kautz, H., Selman, B.: Generating Satisfiable Problem Instances. In: Proceedings of the Seventeenth National Conference on Artificial Intelligence, pp. 256–261. AAAI Press, Menlo Park (2000)
Barták, R., Rudová, H.: Limited Assignments: A New Cutoff Strategy for Incomplete Depth-First Search. In: Proceedings of the 2005 ACM Symposium on Applied Computing, pp. 388–392. ACM Press, New York (2005)
Carlsson, M., Ottosson, G., Carlson, B.: An Open-ended Finite Domain Constraint Solver. In: Hartel, P.H., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292, Springer, Heidelberg (1997)
Colbourn, C.: The Complexity of Completing Partial Latin Squares. Discrete Applied Mathematics 8, 25–30 (1984)
Dotú, I., del Val, A., Cebrián, M.: Channeling Constraints and Value Ordering in the Quasigroup Completion Problem. In: Proceedings of Eighteenth International Joint Conference on Artificial Inteligence, pp. 1372–1373. Morgan Kaufmann Publishers, San Francisco (2003)
Gomez, C., Selman, B.: Problem Structure in the Presence of Perturbations. In: Proceedings of Fourteenth National Conference on Artificial Intelligence, pp. 221–226. AAAI Press, Menlo Park (1997)
Gomez, C., Shmoys, D.: Completing Quasigroups or Latin Squares: A Structured Graph Coloring Problem. In: Proceedings Computational Symposium on Graph Coloring and Generalizations (2002)
Gomez, C., Shmoys, D.: The Promise of LP to Boost CSP Techniques for Combinatorial Problems. In: Proceedings CPAIOR 2002, pp. 291–305 (2002)
Jacobson, M.T., Matthews, P.: Generating Uniformly Distributed Random Latin Squares. Journal of Combinatorial Designs 4, 405–437 (1996)
Kumar, S.K., Russell, A., Sundaram, R.: Approximating Latin Square Extensions. Algorithmica 24, 128–138 (1999)
MacIntyre, E., Prosser, P., Smith, B., Walsh, T.: Random Constraint Satisfaction: theory meets practice. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp. 325–339. Springer, Heidelberg (1998)
Meseguer, P., Walsh, T.: Interleaved and Discrepancy Based Search. In: Proceedings of 13th European Conference on Artificial Intelligence, pp. 239–243. Wiley, Chichester (1998)
Régin, J.-C.: A filtering algorithm for constraints of difference in CSPs. In: Proceedings of Twelfth National Conference on Artificial Intelligence, pp. 362–367. AAAI Press, Menlo Park (1994)
Shaw, P., Stergiou, K., Walsh, T.: Arc Consistency and Quasigroup Completion. In: Proceedings of the ECAI-1998 workshop on non-binary constraints (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Barták, R. (2006). On Generators of Random Quasigroup Problems. In: Hnich, B., Carlsson, M., Fages, F., Rossi, F. (eds) Recent Advances in Constraints. CSCLP 2005. Lecture Notes in Computer Science(), vol 3978. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11754602_12
Download citation
DOI: https://doi.org/10.1007/11754602_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34215-1
Online ISBN: 978-3-540-34216-8
eBook Packages: Computer ScienceComputer Science (R0)