Abstract
Recently, dry and hot seasons have seriously increased the risk of forest fire in the Mediterranean area. Wildland simulators, used to predict fire behavior, can give erroneous forecasts due to lack of precision for certain dynamic input parameters. Developing methods to avoid such parameter problems can improve significantly the fire behavior prediction. In this paper, two methods are evaluated, involving statistical and uncertainty schemes. In each one, the number of simulations that must be carried out is enormous and it is necessary to apply high-performance computing techniques to make the methodology feasible. These techniques have been implemented in parallel schemes and tested in Linux cluster using MPI.
This work has been supported by the MEyC-Spain under contract TIN 2004-03388 and by the European Commission under contract EVG1-CT-2001-00043 SPREAD.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Andrews, P.L.: BEHAVE: Fire Behavior prediction and modeling systems - Burn subsystem, part 1. General Technical Report INT-194. Odgen, UT, US Department of Agriculture, Forest Service, Intermountain Research Station (1986)
Beven, K., Binley, A.: The future of distributed models: model calibration and uncertainty prediction. Hydrological Processes 6, 279–298 (1992)
Bianchini, G., Cortés, A., Margalef, T., Luque, E.: S 2 F 2 M - Statistical System for Forest Fire Management. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2005. LNCS, vol. 3514, pp. 427–434. Springer, Heidelberg (2005)
Abdalhaq, B., Bianchini, G., Cortés, A., Margalef, T., Luque, E.: Improving Wildland Fire Prediction on MPI Clusters. In: Dongarra, J., Laforenza, D., Orlando, S. (eds.) EuroPVM/MPI 2003. LNCS, vol. 2840, pp. 520–528. Springer, Heidelberg (2003)
Bevins, C.D.: FireLib User Manual & Technical Reference (1996), http://www.fire.org
ADAI - CEIF (Center of Forest Fire Studies), http://www.adai.pt/ceif/Gestosa/
Morgan, P., Hardy, C., Swetnam, T.W., Rollins, M.G., Long, D.G.: Mapping fire regimes across time and space: Understanding coarse and fine-scale fire patterns. International Journal of Wildland Fire 10, 329–342 (2001)
MPI: The Message Passing Interface Standard, http://www-unix.mcs.anl.gov/mpi/
Project Spread, Forest Fire Spread Prevention and Mitigation, http://www.adai.pt/spread/
Montgomery, D.C., Runger, G.C.: Probabilidad y Estadística aplicada a la Ingeniería. Limusa Wiley (2002) ISBN: 968-18-5914-6
Piñol, P., Salvador, R., Beven, K.: Model Calibration and uncertainty prediction of fire spread, pp. 99– 111 (2002) ISBN 90-77017-72-0
Rothermel, R.C.: A mathematical model for predecting fire spread in wildland fuels, USDA FS, Ogden TU, Res. Pap. INT-115 (1972)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bianchini, G., Cortés, A., Margalef, T., Luque, E. (2006). Improved Prediction Methods for Wildfires Using High Performance Computing: A Comparison. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds) Computational Science – ICCS 2006. ICCS 2006. Lecture Notes in Computer Science, vol 3991. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11758501_73
Download citation
DOI: https://doi.org/10.1007/11758501_73
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34379-0
Online ISBN: 978-3-540-34380-6
eBook Packages: Computer ScienceComputer Science (R0)