Abstract
We revisit the one-unit gradient ICA algorithm derived from the kurtosis function. By carefully studying properties of the stationary points of the discrete-time one-unit gradient ICA algorithm, with suitable condition on the learning rate, convergence can be proved. The condition on the learning rate helps alleviate the guesswork that accompanies the problem of choosing suitable learning rate in practical computation. These results may be useful to extract independent source signals on-line.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley and Sons, Chichester (2001)
Hyvärinen, A., Oja, E.: A Fast Fixed-point Algorithm for Independent Component Analysis. Neural Computation 9(7), 1483–1492 (1997)
Hyvärinen, A.: Fast and Robust Fixed-point Algorithms for Independent Component Analysis. IEEE Trans. Neural Networks 10(3), 626–634 (1999)
Delfosse, N., Loubaton, P.: Adaptive Blind Separation of Independent Sources: A Deflation Approach. Signal processing 45, 59–83 (1995)
Douglas, S.C.: On the Convergence Behavior of the FastICA Algorithm. In: Proc. of 4th International Symposium on Independent Component Analysis and Blind Signal Separation (ICA 2003), pp. 409–414 (2003)
Regalia, P.A., Kofidis, E.: Monotonic Convergence of Fixed-point Algorithms for ICA. IEEE Trans. Neural Networks 14(4), 943–949 (2003)
Liu, Q., Chen, T.: Sequential Extraction Algorithm for BSS Without Error Accummulation. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3497, pp. 466–471. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ye, M., Li, X., Yang, C., Gao, Z. (2006). Convergence Analysis of a Discrete-Time Single-Unit Gradient ICA Algorithm. In: Wang, J., Yi, Z., Zurada, J.M., Lu, BL., Yin, H. (eds) Advances in Neural Networks - ISNN 2006. ISNN 2006. Lecture Notes in Computer Science, vol 3971. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11759966_168
Download citation
DOI: https://doi.org/10.1007/11759966_168
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34439-1
Online ISBN: 978-3-540-34440-7
eBook Packages: Computer ScienceComputer Science (R0)