Abstract
A dynamical system is proposed for generalized eigen- decomposition problem. The stable points of the dynamical system are proved to be the eigenvectors corresponding to the largest generalized eigenvalue.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chatterjee, C., Roychowdhury, V.P., Zoltowski, M.D., Ramos, J.: Self-organizing and Adaptive Algorithms for Generalized Eigendecomposition. IEEE Trans. on Neural Networks 8, 1518–1530 (1997)
Chen, T.P.: Modified Ojas Algorithms for Principal Subspace and Minor Subspace Extraction. Neural Processing Letters 5, 105–110 (1997)
Diamantaras, K.J., Hornik, K., Strintzis, M.G.: Optimal Linear Compression under Unreliable Representation and Robust PCA Neural Models. IEEE Trans. on Neural Networks, 1186–1195 (1999)
Gloub, G.H., VanLoan, C.F.: Matrix Computations. Johns Hopkins Univ. Press, Baltimore (1983)
Hornik, K., Kuan, C.M.: Convergence Analysis of Local Feature Extraction Algorithms. Neural Networks, 229–240 (1992)
Ljung, L.: Analysis of Recursive Stochastic Algorithms. IEEE Trans. on Auto. Cont. AC-22, 551–575 (1977)
Luo, F., Unbehauen, R., Li, Y.D.: A Principal Component Analysis Algorithm with Invariant Norm. Neurocomputing, 213–221 (1995)
Miller, R.K., Michel, A.N.: Ordinary Differential Equations. Academic, New York (1982)
Oja, E.: Principal Components, Minor Components, and Linear Neural Networks. Neural Networks 5, 927–935 (1992)
Rao, Y.N., Principe, J.C.: An RLS Type Algorithm for Generalized Eigendecomposition. In: IEEE Workshop on Neural Networks for Signal Processing XI, vol. 7, pp. 263–272 (2001)
Xu, L., Oja, E., Suen, C.: Modified Hebbian Learning for Curve and Surface Fitting. Neural Networks 5, 441–457 (1992)
Zhang, Q.F., Leung, Y.W.: A Class of Learning Algorithms for Principal Component Analysis and Minor Component Analysis. IEEE Trans. on Neural Networks 11, 200–204 (2000)
Zhang, Y., Yan, F., Tang, H.J.: Neural Networks Based Approach for Computing Eigenvectors and Eigenvalues of Symmetric Matrix. Comp. and Math. with Appl. 47, 1155–1164 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Liu, L., Wu, W. (2006). Dynamical System for Computing Largest Generalized Eigenvalue. In: Wang, J., Yi, Z., Zurada, J.M., Lu, BL., Yin, H. (eds) Advances in Neural Networks - ISNN 2006. ISNN 2006. Lecture Notes in Computer Science, vol 3971. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11759966_60
Download citation
DOI: https://doi.org/10.1007/11759966_60
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34439-1
Online ISBN: 978-3-540-34440-7
eBook Packages: Computer ScienceComputer Science (R0)