Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Efficient DC Servo Motor Control Based on Neural Noncausal Inverse Modeling of the Plant

  • Conference paper
Advances in Neural Networks - ISNN 2006 (ISNN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3972))

Included in the following conference series:

Abstract

This study introduces an efficient speed controller for a DC servomotor based on neural noncausal inverse modeling of the motor. For this mission; first, motor mathematical model is obtained in digital form. Secondly, to be able to generate necessary inputs which drive the plant, open loop control signals, the inverse model of the system is identified by an ANN structure. Then, a neural controller is introduced immediately, which is trained by a composite error signal. During the identification and control process, an efficient numerical computing based on Newton-Raphson method simulates the dynamic of the motor. The success of the designed control system is tested by a simulation study considering real conditions to be able to occur in real-time running of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Narendra, K.S., Parthasarathy, K.: Identification and Control of Dynamical System Using Neural Networks. IEEE Trans. on Neural Networks 3(1) (1990)

    Google Scholar 

  2. Hunt, K., Sbarbaro, D.: Neural Networks for Nonlinear Internal Model Control. IEE Proc.-D 138(5), 431–438 (1991)

    MATH  Google Scholar 

  3. Narendra, K.S., Mukhopadhyay, S.: Adaptive Control of Nonlinear Multivariable Systems Using Neural Networks. Neural Networks 7(5), 737–752 (1994)

    Article  MATH  Google Scholar 

  4. Watanabe, K., Fukuda, T., Tzafestas, S.G.: An Adaptive Control for CARMA Systems Using Linear Neural Networks. Int. J. Control 56(2), 483–497 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  5. Weerasooriya, S., El-Sharkawi, M.A.: Identification and Control of a DC Motor Using Back-Propagation Neural Networks. IEEE Trans. on Energy Conv. 6(4), 663–669 (1991)

    Article  Google Scholar 

  6. Chiasson, J.: Nonlinear Differential-Geometric Technique for Control of a Series DC Motor. IEEE Trans. Control Syst. Technol. 2(1), 35–42 (1994)

    Article  Google Scholar 

  7. Houpis, C.H.: Digital Control Systems. McGraw-Hill Inc., Singapore (1992)

    Google Scholar 

  8. Rice, J.R.: Numerical Methods, Software, and Analysis, 2nd edn. Academic Press, New York (1992)

    Google Scholar 

  9. Zurada, J.M.: Introduction to Artificial Neural Systems. West Publishing Co., St. Paul (1992)

    Google Scholar 

  10. Haykin, S.: Neural Networks – A Comprehensive Foundation. Macmillan College Publishing Co., US (1994)

    MATH  Google Scholar 

  11. Soderstrom, T., Stoıca, P.: System Identification. Prentice Hall, London (1989)

    Google Scholar 

  12. Isermann, R.: Parameter Adaptive Control Algorithms – A Tutorial. Automatica 18(5), 513–528 (1982)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Özçalık, H.R. (2006). An Efficient DC Servo Motor Control Based on Neural Noncausal Inverse Modeling of the Plant. In: Wang, J., Yi, Z., Zurada, J.M., Lu, BL., Yin, H. (eds) Advances in Neural Networks - ISNN 2006. ISNN 2006. Lecture Notes in Computer Science, vol 3972. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11760023_158

Download citation

  • DOI: https://doi.org/10.1007/11760023_158

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34437-7

  • Online ISBN: 978-3-540-34438-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics