Abstract
In this paper we present a Gabor Wavelet Network, a wavelet neural network based on Gabor functions, applied to image registration. Although wavelet network is time consuming technique, we decrease computational costs by incorporating three techniques: gradient-based feature selection, Gabor filtering, and wavelet neural network. Similarity criterion is built upon analyzing intensity function with Gabor Wavelet Network, which carries out the image registration by both gradient-based and texture features.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Christensen, O.: Frames, Riesz Bases, and Discrete Gabor/Wavelet Expansions. Bull. Am. Math. Soc., New Ser. 38(3), 273–291 (2001)
Gabor, D.: Thoery of Communications. IEE (London) 93(3), 429–457 (1946)
Heil, C., Walnut, D.: Continiuous and Discrete Wavelet Transforms. SIAM Review 31(4), 628–666 (1989)
Jain, A.K., Farrokhnia, F.: Unsupervised Texture Segmentation Using Gabor Filters. Pattern Recognition 24(12), 1167–1186 (1991)
Kruger, V., Sommer, G.: Gabor Wavelet Networks for Object Representation. Journal of the Optical Society of America (JOSA) 19(6), 1112–1119 (2002)
Kruger, V., Sommer, G.: Gabor Wavelet Networks for Efficient Head Pose Estimation. Image and Vision Computing 20(9-10), 665–672 (2002)
Shi, J., Tomasi, C.: Good Features to Track. In: IEEE Int. Conf. Computer Vision and Pattern Recognition (CVPR 1994), pp. 593–600 (1994)
Zhang, Q., Benveniste, A.: Wavelet Network. IEEE Transactions on Neural Networks 3(6), 889–898 (1992)
Zhang, Q.: Using Wavelet Network in Nonparametric Estimation. IEEE Trans. Neural Networks 8(2), 227–236 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Spinko, V., Shi, D., Ng, W.S., Leong, JL. (2006). Gabor Neural Network for Endoscopic Image Registration. In: Wang, J., Yi, Z., Zurada, J.M., Lu, BL., Yin, H. (eds) Advances in Neural Networks - ISNN 2006. ISNN 2006. Lecture Notes in Computer Science, vol 3972. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11760023_70
Download citation
DOI: https://doi.org/10.1007/11760023_70
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34437-7
Online ISBN: 978-3-540-34438-4
eBook Packages: Computer ScienceComputer Science (R0)