Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Gabor Neural Network for Endoscopic Image Registration

  • Conference paper
Advances in Neural Networks - ISNN 2006 (ISNN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3972))

Included in the following conference series:

  • 79 Accesses

Abstract

In this paper we present a Gabor Wavelet Network, a wavelet neural network based on Gabor functions, applied to image registration. Although wavelet network is time consuming technique, we decrease computational costs by incorporating three techniques: gradient-based feature selection, Gabor filtering, and wavelet neural network. Similarity criterion is built upon analyzing intensity function with Gabor Wavelet Network, which carries out the image registration by both gradient-based and texture features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Christensen, O.: Frames, Riesz Bases, and Discrete Gabor/Wavelet Expansions. Bull. Am. Math. Soc., New Ser. 38(3), 273–291 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Gabor, D.: Thoery of Communications. IEE (London) 93(3), 429–457 (1946)

    Google Scholar 

  3. Heil, C., Walnut, D.: Continiuous and Discrete Wavelet Transforms. SIAM Review 31(4), 628–666 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  4. Jain, A.K., Farrokhnia, F.: Unsupervised Texture Segmentation Using Gabor Filters. Pattern Recognition 24(12), 1167–1186 (1991)

    Article  Google Scholar 

  5. Kruger, V., Sommer, G.: Gabor Wavelet Networks for Object Representation. Journal of the Optical Society of America (JOSA) 19(6), 1112–1119 (2002)

    Article  Google Scholar 

  6. Kruger, V., Sommer, G.: Gabor Wavelet Networks for Efficient Head Pose Estimation. Image and Vision Computing 20(9-10), 665–672 (2002)

    Article  Google Scholar 

  7. Shi, J., Tomasi, C.: Good Features to Track. In: IEEE Int. Conf. Computer Vision and Pattern Recognition (CVPR 1994), pp. 593–600 (1994)

    Google Scholar 

  8. Zhang, Q., Benveniste, A.: Wavelet Network. IEEE Transactions on Neural Networks 3(6), 889–898 (1992)

    Article  Google Scholar 

  9. Zhang, Q.: Using Wavelet Network in Nonparametric Estimation. IEEE Trans. Neural Networks 8(2), 227–236 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Spinko, V., Shi, D., Ng, W.S., Leong, JL. (2006). Gabor Neural Network for Endoscopic Image Registration. In: Wang, J., Yi, Z., Zurada, J.M., Lu, BL., Yin, H. (eds) Advances in Neural Networks - ISNN 2006. ISNN 2006. Lecture Notes in Computer Science, vol 3972. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11760023_70

Download citation

  • DOI: https://doi.org/10.1007/11760023_70

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34437-7

  • Online ISBN: 978-3-540-34438-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics