Abstract
This paper proposes a new approach to build lightweight Intrusion Detection System (IDS) based on Random Forest (RF). RF is a special kind of ensemble learning techniques and it turns out to perform very well compared to other classification algorithms such as Support Vector Machines (SVM) and Artificial Neural Networks (ANN). In addition, RF produces a measure of importance of feature variables. Our approach is able not only to show high detection rates but also to figure out stable output of important features simultaneously. The results of experiments on KDD 1999 intrusion detection dataset indicate the feasibility of our approach.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Chapman and Hall, New York (1984)
Breiman, L.: Random forest. Machine Learning 45(1), 5–32 (2001)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. John Wiley & Sons, Inc., Chichester (2001)
Fox, K.L., Henning, R.R., Reed, J.H., Simonian, R.P.: A Neural Network Approach Towards Intrusion Detection. In: Proc. of the 13th National Computer Security Conf., Washington, DC (1990)
Fugate, M., Gattiker, J.R.: Anomaly Detection Enhanced Classification in Computer Intrusion Detection. In: Lee, S.-W., Verri, A. (eds.) SVM 2002. LNCS, vol. 2388, pp. 186–197. Springer, Heidelberg (2002)
Hu, W., Liao, Y., Vemuri, V.R.: Robust Support Vector Machines for Anomaly Detection in Computer Security. In: Proc. of Int. Conf. on Machine Learning and Applications 2003, pp. 168–174. CSREA Press (2003)
KDD Cup 1999 Data, http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
KDD-CUP-99 Task Description, http://kdd.ics.uci.edu/databases/kddcup99/task.html
Kim, D., Nguyen, H.-N., Ohn, S.-Y., Park, J.: Fusions of GA and SVM for Anomaly Detection in Intrusion Detection System. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3498, pp. 415–420. Springer, Heidelberg (2005)
Kruegel, C., Valeur, F.: Stateful Intrusion Detection for High-Speed Networks. In: Proc. of the IEEE Symposium on Research on Security and Privacy, pp. 285–293 (2002)
Meyer, D., Leisch, F., Hornik, K.: The Support Vector Machine under Test. Neurocomputing 55, 169–186 (2003)
Nguyen, B.V.: An Application of Support Vector Machines to Anomaly Detection. Research in Computer Science-Support Vector Machine, report (2002)
Ourston, D., Matzner, S., Stump, W., Hopkins, B.: Applications of Hidden Markov Models to Detecting Multi-Stage Network Attacks. In: Proc. of the 36th Hawaii Int. Conf. on System Sciences, pp. 334–343. IEEE Computer Society Press, Los Alamitos (2002)
Park, J., Shazzad, S.K.M., Kim, D.: Toward Modeling Lightweight Intrusion Detection System through Correlation-Based Hybrid Feature Selection. In: Feng, D., Lin, D., Yung, M. (eds.) CISC 2005. LNCS, vol. 3822, pp. 279–289. Springer, Heidelberg (2005)
Sabhnani, M., Serpen, G.: On Failure of Machine Learning Algorithms for Detecting Misuse in KDD Intrusion Detection Data Set. Intelligent Analysis (2004)
SNORT, http://www.snort.org
Song, H., Lockwood, J.W.: Efficient Packet Classification for Network Intrusion Detection using FPGA. In: Schmit, H., Wilton, S.J.E. (eds.) Proc. of the ACM/SIGDA 13th Int. Symposium on Field-Programmable Gate Arrays. FPGA, pp. 238–245 (2005)
Sung, A.H., Mukkamala, S.: Identifying Important Features for Intrusion Detection Using Support Vector Machines and Neural Networks. In: Proc. of the 2003 Int. Symposium on Applications and the Internet Technology, pp. 209–216. IEEE Computer Society Press, Los Alamitos (2003)
The R Project for Statistical Computing, http://www.r-project.org/
Mukkamala, S., Sung, A.H., Ribeiro, B.M.: Model Selection for Kernel Based Intrusion Detection Systems. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA 2007. LNCS, vol. 4431, pp. 458–461. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kim, D.S., Lee, S.M., Park, J.S. (2006). Building Lightweight Intrusion Detection System Based on Random Forest. In: Wang, J., Yi, Z., Zurada, J.M., Lu, BL., Yin, H. (eds) Advances in Neural Networks - ISNN 2006. ISNN 2006. Lecture Notes in Computer Science, vol 3973. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11760191_33
Download citation
DOI: https://doi.org/10.1007/11760191_33
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34482-7
Online ISBN: 978-3-540-34483-4
eBook Packages: Computer ScienceComputer Science (R0)