Abstract
We present an approach to interpret gene profiles derived from biomedical literature using Self Organizing Maps (SOMs). Comparison of different clustering algorithms shows that SOMs perform better in grouping high dimensional gene profiles when a lot of noise is present in the data. Qualitative analysis of the clustering results prove that SOMs allow an in-depth interpretation of gene profiles with biological relevance.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baldwin, B., Morton, T., Bagga, A., Baldridge, J., Chandraseker, R., Dimitriadis, A., Snyder, K., Wolska, M.: Description of the Upenn Cam System as Used for Coreference. In: Proceedings of the Seventh Message Understanding Conference (MUC-7), Kaufmann, San Mateo (1998)
Glenisson, P., Coessens, B., Van Vooren, S., Mathys, J., Moreau, Y., De Moor, B.: TXTGate: Profiling Gene Groups with Text-based Information. Genome Biology 5(6), 1–12 (2004)
Van Hulle, M.: Faithful Representations and Topographic Maps: From Distortion to Information Based Self Organization. John Wiley & Sons Press, Chichester (2002)
Kohonen, T., Kaski, S., Lagus, K., Salojärvi, J., Honkela, J., Paatero, V., Saarela, A.: Self Organization of a Massive Document Collection. IEEE Trans. Neural Networks 11(3), 574–585 (2000)
Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E., Golub, T.: Interpreting Patterns of Gene Expression with Self-organizing Maps: Methods and Application to Hematropoietic Differentiation. Genetics 96(6), 2907–2912 (1999)
Ultsch, A., Moerchen, F.: ESOM-Maps: Tools for Clustering, Visualization, and Classification with Emergent SOM. Technical Report No. 46. Dept. of Mathematics and Computer Science, University of Marburg, Germany (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yu, S., Van Vooren, S., Coessens, B., De Moor, B. (2006). Interpreting Gene Profiles from Biomedical Literature Mining with Self Organizing Maps. In: Wang, J., Yi, Z., Zurada, J.M., Lu, BL., Yin, H. (eds) Advances in Neural Networks - ISNN 2006. ISNN 2006. Lecture Notes in Computer Science, vol 3973. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11760191_93
Download citation
DOI: https://doi.org/10.1007/11760191_93
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34482-7
Online ISBN: 978-3-540-34483-4
eBook Packages: Computer ScienceComputer Science (R0)