Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Interpreting Gene Profiles from Biomedical Literature Mining with Self Organizing Maps

  • Conference paper
Advances in Neural Networks - ISNN 2006 (ISNN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3973))

Included in the following conference series:

  • 1676 Accesses

Abstract

We present an approach to interpret gene profiles derived from biomedical literature using Self Organizing Maps (SOMs). Comparison of different clustering algorithms shows that SOMs perform better in grouping high dimensional gene profiles when a lot of noise is present in the data. Qualitative analysis of the clustering results prove that SOMs allow an in-depth interpretation of gene profiles with biological relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baldwin, B., Morton, T., Bagga, A., Baldridge, J., Chandraseker, R., Dimitriadis, A., Snyder, K., Wolska, M.: Description of the Upenn Cam System as Used for Coreference. In: Proceedings of the Seventh Message Understanding Conference (MUC-7), Kaufmann, San Mateo (1998)

    Google Scholar 

  2. Glenisson, P., Coessens, B., Van Vooren, S., Mathys, J., Moreau, Y., De Moor, B.: TXTGate: Profiling Gene Groups with Text-based Information. Genome Biology 5(6), 1–12 (2004)

    Article  Google Scholar 

  3. Van Hulle, M.: Faithful Representations and Topographic Maps: From Distortion to Information Based Self Organization. John Wiley & Sons Press, Chichester (2002)

    Google Scholar 

  4. Kohonen, T., Kaski, S., Lagus, K., Salojärvi, J., Honkela, J., Paatero, V., Saarela, A.: Self Organization of a Massive Document Collection. IEEE Trans. Neural Networks 11(3), 574–585 (2000)

    Article  Google Scholar 

  5. Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E., Golub, T.: Interpreting Patterns of Gene Expression with Self-organizing Maps: Methods and Application to Hematropoietic Differentiation. Genetics 96(6), 2907–2912 (1999)

    Google Scholar 

  6. Ultsch, A., Moerchen, F.: ESOM-Maps: Tools for Clustering, Visualization, and Classification with Emergent SOM. Technical Report No. 46. Dept. of Mathematics and Computer Science, University of Marburg, Germany (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yu, S., Van Vooren, S., Coessens, B., De Moor, B. (2006). Interpreting Gene Profiles from Biomedical Literature Mining with Self Organizing Maps. In: Wang, J., Yi, Z., Zurada, J.M., Lu, BL., Yin, H. (eds) Advances in Neural Networks - ISNN 2006. ISNN 2006. Lecture Notes in Computer Science, vol 3973. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11760191_93

Download citation

  • DOI: https://doi.org/10.1007/11760191_93

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34482-7

  • Online ISBN: 978-3-540-34483-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics