Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Intelligent Information Personalization Leveraging Constraint Satisfaction and Association Rule Methods

  • Conference paper
Advances in Artificial Intelligence (Canadian AI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4013))

  • 2793 Accesses

Abstract

Recommender systems, using information personalization methods, provide information that is relevant to a user-model. Current information personalization methods do not take into account whether multiple documents when recommended together present a factually consistent outlook. In the realm of content-based filtering, in this paper, we investigate establishing the factual consistency between the set of documents deemed relevant to a user. We approach information personalization as a constraint satisfaction problem, where we attempt to satisfy two constraints—i.e. user-model constraints to determine the relevance of a document to a user and consistency constraints to establish factual consistency of the overall personalized information. Our information personalization framework involves: (a) an automatic constraint acquisition method, based on association rule mining, to derive consistency constraints from a corpus of documents; and (b) a hybrid of constraint satisfaction and optimization methods to derive an optimal solution comprising both relevant and factually consistent documents. We apply our information personalization framework to filter news items using the Reuters-21578 dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Belkin, N.J., Croft, W.B.: Information personalization and information retrieval: Two sides of the same coin? Communications of the ACM 35(12), 29–38 (1992)

    Article  Google Scholar 

  2. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley, Reading (1999)

    Google Scholar 

  3. Hanani, U., Shapira, B., Shoval, P.: Information Filtering: Overview of Issues, Research and Systems. User Modeling and User-Adapted Interaction 11, 203–259 (2001)

    Article  MATH  Google Scholar 

  4. Foltz, P.W.: Using latent semantic indexing for information filtering. In: ACM SIG-OIS, pp. 40–47 (1990)

    Google Scholar 

  5. Mooney, R.J., Roy, L.: Content-based book recommending using learning for text categorization. In: Proceedings of the 5th ACM Conference on Digital Libraries, San Antonio, Texas, USA, June 2000, pp. 195–204 (2000)

    Google Scholar 

  6. Malone, T.W., Grant, K.R., Turbak, F.A., Brobst, S.A., Cohen, M.D.: Intelligent information sharing systems. Communications of the ACM 30(5), 390–402 (1987)

    Article  Google Scholar 

  7. Jennings, A., Higuchi, H.: A personal news service based on a user model neural network. IEICE Transactions on Information and Systems E75-D(2), 198–210

    Google Scholar 

  8. Desjardins, G., Godin, R.: Combining relevance feedback and genetic algorithms in an Internet information personalization engine. In: RIAO 2000 Conference Proceedings, Paris, France, vol. 2 (2000)

    Google Scholar 

  9. Abidi, S.S.R., Han, C.: Constraint Satisfaction Methods for Information Personalization. In: Tawfik, A.Y., Goodwin, S.D. (eds.) Canadian AI 2004. LNCS (LNAI), vol. 3060, Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Abidi, S.S.R., Han, C.: An Adaptive Hypermedia System for Information Customization via Content Adaptation. IADIS International Journal of WWW/Internet 2(1), 79–94 (2004)

    Google Scholar 

  11. Han, J.W., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, San Francisco (2000)

    Google Scholar 

  12. Tsang, E.: Foundations of constraint satisfaction. Academic Press, London (1993)

    Google Scholar 

  13. Barták, R.: Constraint programming: In pursuit of the holy grail. In: Proceedings of the Week of Doctoral Students (WDS 1999), Part IV, pp. 555–564. MatFyz Press, Prague (1999)

    Google Scholar 

  14. Torrens, M., Faltings, B.: SmartClients: Constraint satisfaction as a paradigm for scaleable intelligent information systems. In: Workshop on Artificial Intelligence on Electronic Commerce, AAAI-1999, Florida, USA (1999)

    Google Scholar 

  15. Padmanabhuni, S., You, J.H., Ghose, A.: A framework for learning constraints. In: Proc. of the PRICAI Workshop on Induction of Complex Representations (August 1996)

    Google Scholar 

  16. O’Sullivan, B., Freuder, E.C., O’Connell, S.: Interactive Constraint Acquisition. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, Springer, Heidelberg (2001)

    Google Scholar 

  17. Brin, S., Motwani, R., Silverstein, C.: Beyond Market Baskets - Generalizing Association Rules to Correlations. In: Proceedings of the ACM SIGMOD (1997)

    Google Scholar 

  18. Freuder, E., Wallace, R.: Partial Constraint Satisfaction. Artificial Intelligence 58, 21–70 (1992)

    Article  MathSciNet  Google Scholar 

  19. Aarts, E., Lenstra, J.K. (eds.): Local search in combinatorial optimization. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  20. Meseguer, P., Bouhmala, N., Bouzoubaa, T., Irgens, M., Sanchez, M.: Current Approaches for Solving Over-Constrained Problems. Constraints 8, 9–39 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abidi, S.S.R., Zeng, Y. (2006). Intelligent Information Personalization Leveraging Constraint Satisfaction and Association Rule Methods. In: Lamontagne, L., Marchand, M. (eds) Advances in Artificial Intelligence. Canadian AI 2006. Lecture Notes in Computer Science(), vol 4013. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11766247_12

Download citation

  • DOI: https://doi.org/10.1007/11766247_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34628-9

  • Online ISBN: 978-3-540-34630-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics