Abstract
Recommender systems, using information personalization methods, provide information that is relevant to a user-model. Current information personalization methods do not take into account whether multiple documents when recommended together present a factually consistent outlook. In the realm of content-based filtering, in this paper, we investigate establishing the factual consistency between the set of documents deemed relevant to a user. We approach information personalization as a constraint satisfaction problem, where we attempt to satisfy two constraints—i.e. user-model constraints to determine the relevance of a document to a user and consistency constraints to establish factual consistency of the overall personalized information. Our information personalization framework involves: (a) an automatic constraint acquisition method, based on association rule mining, to derive consistency constraints from a corpus of documents; and (b) a hybrid of constraint satisfaction and optimization methods to derive an optimal solution comprising both relevant and factually consistent documents. We apply our information personalization framework to filter news items using the Reuters-21578 dataset.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Belkin, N.J., Croft, W.B.: Information personalization and information retrieval: Two sides of the same coin? Communications of the ACM 35(12), 29–38 (1992)
Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley, Reading (1999)
Hanani, U., Shapira, B., Shoval, P.: Information Filtering: Overview of Issues, Research and Systems. User Modeling and User-Adapted Interaction 11, 203–259 (2001)
Foltz, P.W.: Using latent semantic indexing for information filtering. In: ACM SIG-OIS, pp. 40–47 (1990)
Mooney, R.J., Roy, L.: Content-based book recommending using learning for text categorization. In: Proceedings of the 5th ACM Conference on Digital Libraries, San Antonio, Texas, USA, June 2000, pp. 195–204 (2000)
Malone, T.W., Grant, K.R., Turbak, F.A., Brobst, S.A., Cohen, M.D.: Intelligent information sharing systems. Communications of the ACM 30(5), 390–402 (1987)
Jennings, A., Higuchi, H.: A personal news service based on a user model neural network. IEICE Transactions on Information and Systems E75-D(2), 198–210
Desjardins, G., Godin, R.: Combining relevance feedback and genetic algorithms in an Internet information personalization engine. In: RIAO 2000 Conference Proceedings, Paris, France, vol. 2 (2000)
Abidi, S.S.R., Han, C.: Constraint Satisfaction Methods for Information Personalization. In: Tawfik, A.Y., Goodwin, S.D. (eds.) Canadian AI 2004. LNCS (LNAI), vol. 3060, Springer, Heidelberg (2004)
Abidi, S.S.R., Han, C.: An Adaptive Hypermedia System for Information Customization via Content Adaptation. IADIS International Journal of WWW/Internet 2(1), 79–94 (2004)
Han, J.W., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, San Francisco (2000)
Tsang, E.: Foundations of constraint satisfaction. Academic Press, London (1993)
Barták, R.: Constraint programming: In pursuit of the holy grail. In: Proceedings of the Week of Doctoral Students (WDS 1999), Part IV, pp. 555–564. MatFyz Press, Prague (1999)
Torrens, M., Faltings, B.: SmartClients: Constraint satisfaction as a paradigm for scaleable intelligent information systems. In: Workshop on Artificial Intelligence on Electronic Commerce, AAAI-1999, Florida, USA (1999)
Padmanabhuni, S., You, J.H., Ghose, A.: A framework for learning constraints. In: Proc. of the PRICAI Workshop on Induction of Complex Representations (August 1996)
O’Sullivan, B., Freuder, E.C., O’Connell, S.: Interactive Constraint Acquisition. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, Springer, Heidelberg (2001)
Brin, S., Motwani, R., Silverstein, C.: Beyond Market Baskets - Generalizing Association Rules to Correlations. In: Proceedings of the ACM SIGMOD (1997)
Freuder, E., Wallace, R.: Partial Constraint Satisfaction. Artificial Intelligence 58, 21–70 (1992)
Aarts, E., Lenstra, J.K. (eds.): Local search in combinatorial optimization. Princeton University Press, Princeton (2003)
Meseguer, P., Bouhmala, N., Bouzoubaa, T., Irgens, M., Sanchez, M.: Current Approaches for Solving Over-Constrained Problems. Constraints 8, 9–39 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Abidi, S.S.R., Zeng, Y. (2006). Intelligent Information Personalization Leveraging Constraint Satisfaction and Association Rule Methods. In: Lamontagne, L., Marchand, M. (eds) Advances in Artificial Intelligence. Canadian AI 2006. Lecture Notes in Computer Science(), vol 4013. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11766247_12
Download citation
DOI: https://doi.org/10.1007/11766247_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34628-9
Online ISBN: 978-3-540-34630-2
eBook Packages: Computer ScienceComputer Science (R0)